1
|
Guhe V, Singh S. Targeting peptide based therapeutics: Integrated computational and experimental studies of autophagic regulation in host-parasite interaction. ChemMedChem 2024; 19:e202300679. [PMID: 38317307 DOI: 10.1002/cmdc.202300679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Cutaneous leishmaniasis caused by the intracellular parasite Leishmania major, exhibits significant public health challenge worldwide. With limited treatment options available, the identification of novel therapeutic targets is of paramount importance. Present study manifested the crucial role of ATG8 protein as a potential target in combating L. major infection. Using machine learning algorithms, we identified non-conserved motifs within the ATG8 in L. major. Subsequently, a peptide library was generated based on these motifs, and three peptides were selected for further investigation through molecular docking and molecular dynamics simulations. Surface Plasmon Resonance (SPR) experiments confirmed the direct interaction between ATG8 and the identified peptides. Remarkably, these peptides demonstrated the ability to cross the parasite membrane and exert profound effects on L. major. Peptide treatment significantly impacted parasite survival, inducing alterations in the cell cycle and morphology. Furthermore, the peptides were found to modulate autophagosome formation, particularly under starved conditions, indicating their involvement in autophagy regulation within L. major. In vitro studies revealed that the selected peptides effectively decreased the parasite load within the infected host cells. Encouragingly, in vivo experiments corroborated these findings, demonstrating a reduction in parasite burden upon peptide administration. Additionally, the peptides were observed to affect the levels of LC3II, a known autophagy marker within the host cells. Collectively, our findings highlight the efficacy of these novel peptides in targeting L. major ATG8 and disrupting parasite survival, wherein P2 is showing prominent effect on L. major as compared to P1. These results provide valuable insights into the development of innovative therapeutic strategies against leishmaniasis.
Collapse
Affiliation(s)
- Vrushali Guhe
- Systems Medicine Lab, National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune, 411007, India Phone
| | - Shailza Singh
- Systems Medicine Lab, National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune, 411007, India Phone
| |
Collapse
|
2
|
Antimicrobial peptides with cell-penetrating activity as prophylactic and treatment drugs. Biosci Rep 2022; 42:231731. [PMID: 36052730 PMCID: PMC9508529 DOI: 10.1042/bsr20221789] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 01/18/2023] Open
Abstract
Health is fundamental for the development of individuals and evolution of species. In that sense, for human societies is relevant to understand how the human body has developed molecular strategies to maintain health. In the present review, we summarize diverse evidence that support the role of peptides in this endeavor. Of particular interest to the present review are antimicrobial peptides (AMP) and cell-penetrating peptides (CPP). Different experimental evidence indicates that AMP/CPP are able to regulate autophagy, which in turn regulates the immune system response. AMP also assists in the establishment of the microbiota, which in turn is critical for different behavioral and health aspects of humans. Thus, AMP and CPP are multifunctional peptides that regulate two aspects of our bodies that are fundamental to our health: autophagy and microbiota. While it is now clear the multifunctional nature of these peptides, we are still in the early stages of the development of computational strategies aimed to assist experimentalists in identifying selective multifunctional AMP/CPP to control nonhealthy conditions. For instance, both AMP and CPP are computationally characterized as amphipatic and cationic, yet none of these features are relevant to differentiate these peptides from non-AMP or non-CPP. The present review aims to highlight current knowledge that may facilitate the development of AMP’s design tools for preventing or treating illness.
Collapse
|
3
|
Antimicrobial Peptide against Mycobacterium Tuberculosis That Activates Autophagy Is an Effective Treatment for Tuberculosis. Pharmaceutics 2020; 12:pharmaceutics12111071. [PMID: 33182483 PMCID: PMC7697726 DOI: 10.3390/pharmaceutics12111071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 11/17/2022] Open
Abstract
Mycobacterium tuberculosis (MTB) is the principal cause of human tuberculosis (TB), which is a serious health problem worldwide. The development of innovative therapeutic modalities to treat TB is mainly due to the emergence of multi drug resistant (MDR) TB. Autophagy is a cell-host defense process. Previous studies have reported that autophagy-activating agents eliminate intracellular MDR MTB. Thus, combining a direct antibiotic activity against circulating bacteria with autophagy activation to eliminate bacteria residing inside cells could treat MDR TB. We show that the synthetic peptide, IP-1 (KFLNRFWHWLQLKPGQPMY), induced autophagy in HEK293T cells and macrophages at a low dose (10 μM), while increasing the dose (50 μM) induced cell death; IP-1 induced the secretion of TNFα in macrophages and killed Mtb at a dose where macrophages are not killed by IP-1. Moreover, IP-1 showed significant therapeutic activity in a mice model of progressive pulmonary TB. In terms of the mechanism of action, IP-1 sequesters ATP in vitro and inside living cells. Thus, IP-1 is the first antimicrobial peptide that eliminates MDR MTB infection by combining four activities: reducing ATP levels, bactericidal activity, autophagy activation, and TNFα secretion.
Collapse
|
4
|
|
5
|
Lu L, Arranz-Trullén J, Prats-Ejarque G, Pulido D, Bhakta S, Boix E. Human Antimicrobial RNases Inhibit Intracellular Bacterial Growth and Induce Autophagy in Mycobacteria-Infected Macrophages. Front Immunol 2019; 10:1500. [PMID: 31312205 PMCID: PMC6614385 DOI: 10.3389/fimmu.2019.01500] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022] Open
Abstract
The development of novel treatment against tuberculosis is a priority global health challenge. Antimicrobial proteins and peptides offer a multifaceted mechanism suitable to fight bacterial resistance. Within the RNaseA superfamily there is a group of highly cationic proteins secreted by innate immune cells with anti-infective and immune-regulatory properties. In this work, we have tested the human canonical members of the RNase family using a spot-culture growth inhibition assay based mycobacteria-infected macrophage model for evaluating their anti-tubercular properties. Out of the seven tested recombinant human RNases, we have identified two members, RNase3 and RNase6, which were highly effective against Mycobacterium aurum extra- and intracellularly and induced an autophagy process. We observed the proteins internalization within macrophages and their capacity to eradicate the intracellular mycobacterial infection at a low micro-molar range. Contribution of the enzymatic activity was discarded by site-directed mutagenesis at the RNase catalytic site. The protein induction of autophagy was analyzed by RT-qPCR, western blot, immunofluorescence, and electron microscopy. Specific blockage of auto-phagosome formation and maturation reduced the protein's ability to eradicate the infection. In addition, we found that the M. aurum infection of human THP1 macrophages modulates the expression of endogenous RNase3 and RNase6, suggesting a function in vivo. Overall, our data anticipate a biological role for human antimicrobial RNases in host response to mycobacterial infections and set the basis for the design of novel anti-tubercular drugs.
Collapse
Affiliation(s)
- Lu Lu
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Javier Arranz-Trullén
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
| | - Guillem Prats-Ejarque
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - David Pulido
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
6
|
Osorio C, Kanukuntla T, Diaz E, Jafri N, Cummings M, Sfera A. The Post-amyloid Era in Alzheimer's Disease: Trust Your Gut Feeling. Front Aging Neurosci 2019; 11:143. [PMID: 31297054 PMCID: PMC6608545 DOI: 10.3389/fnagi.2019.00143] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022] Open
Abstract
The amyloid hypothesis, the assumption that beta-amyloid toxicity is the primary cause of neuronal and synaptic loss, has been the mainstream research concept in Alzheimer's disease for the past two decades. Currently, this model is quietly being replaced by a more holistic, “systemic disease” paradigm which, like the aging process, affects multiple body tissues and organs, including the gut microbiota. It is well-established that inflammation is a hallmark of cellular senescence; however, the infection-senescence link has been less explored. Microbiota-induced senescence is a gradually emerging concept promoted by the discovery of pathogens and their products in Alzheimer's disease brains associated with senescent neurons, glia, and endothelial cells. Infectious agents have previously been associated with Alzheimer's disease, but the cause vs. effect issue could not be resolved. A recent study may have settled this debate as it shows that gingipain, a Porphyromonas gingivalis toxin, can be detected not only in Alzheimer's disease but also in the brains of older individuals deceased prior to developing the illness. In this review, we take the position that gut and other microbes from the body periphery reach the brain by triggering intestinal and blood-brain barrier senescence and disruption. We also surmise that novel Alzheimer's disease findings, including neuronal somatic mosaicism, iron dyshomeostasis, aggressive glial phenotypes, and loss of aerobic glycolysis, can be explained by the infection-senescence model. In addition, we discuss potential cellular senescence targets and therapeutic strategies, including iron chelators, inflammasome inhibitors, senolytic antibiotics, mitophagy inducers, and epigenetic metabolic reprograming.
Collapse
Affiliation(s)
- Carolina Osorio
- Psychiatry, Loma Linda University, Loma Linda, CA, United States
| | - Tulasi Kanukuntla
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Eddie Diaz
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Nyla Jafri
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Michael Cummings
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Adonis Sfera
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| |
Collapse
|
7
|
Qin X, Shi X, Tu L, Ma Y, Zhou Z, Zhao R, Zhan M, Yin F, Li Z. Autophagy inducing cyclic peptides constructed by methionine alkylation. Chem Commun (Camb) 2019; 55:4198-4201. [PMID: 30896003 DOI: 10.1039/c9cc01027k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Peptides that induced autophagy at micromolar concentrations with improved proteolytic resistance properties were generated using the facile methionine bis-alkylation method. Notably, a short bicyclic peptide 7f was proven to be the most potent one among the designed peptides in regards to autophagy inducing activity. This study facilitated the development of a peptide-based autophagy inducer and demonstrated the potential applications of the methionine alkylation-based macrocyclization method for the diversity-oriented generation of peptide-based autophagy inducers.
Collapse
Affiliation(s)
- Xuan Qin
- State Key laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Non-protein biologic therapeutics. Curr Opin Biotechnol 2017; 53:65-75. [PMID: 29289799 DOI: 10.1016/j.copbio.2017.12.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/10/2017] [Accepted: 12/11/2017] [Indexed: 01/15/2023]
Abstract
While the therapeutic biologics are dominated by therapeutic proteins, particularly monoclonal antibodies, a wide range of non-protein therapeutic biologics are rapidly gaining ground both in clinical studies and approved products. Many of these first-in-class therapies provide novel treatment modalities and address previously untreatable conditions or undruggable targets. In particular, novel treatments for rare genetic disorders and qualitatively different oncology therapeutics have been approved in the last two years. This review discusses recent advances in peptide, nucleic acid, carbohydrate, vaccine, and cell-based therapies as well as the manufacturing and commercialization challenges associated with these novel therapeutics.
Collapse
|
9
|
Arranz-Trullén J, Lu L, Pulido D, Bhakta S, Boix E. Host Antimicrobial Peptides: The Promise of New Treatment Strategies against Tuberculosis. Front Immunol 2017; 8:1499. [PMID: 29163551 PMCID: PMC5681943 DOI: 10.3389/fimmu.2017.01499] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis (TB) continues to be a devastating infectious disease and remerges as a global health emergency due to an alarming rise of antimicrobial resistance to its treatment. Despite of the serious effort that has been applied to develop effective antitubercular chemotherapies, the potential of antimicrobial peptides (AMPs) remains underexploited. A large amount of literature is now accessible on the AMP mechanisms of action against a diversity of pathogens; nevertheless, research on their activity on mycobacteria is still scarce. In particular, there is an urgent need to integrate all available interdisciplinary strategies to eradicate extensively drug-resistant Mycobacterium tuberculosis strains. In this context, we should not underestimate our endogenous antimicrobial proteins and peptides as ancient players of the human host defense system. We are confident that novel antibiotics based on human AMPs displaying a rapid and multifaceted mechanism, with reduced toxicity, should significantly contribute to reverse the tide of antimycobacterial drug resistance. In this review, we have provided an up to date perspective of the current research on AMPs to be applied in the fight against TB. A better understanding on the mechanisms of action of human endogenous peptides should ensure the basis for the best guided design of novel antitubercular chemotherapeutics.
Collapse
Affiliation(s)
- Javier Arranz-Trullén
- Faculty of Biosciences, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck University of London, London, United Kingdom
| | - Lu Lu
- Faculty of Biosciences, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - David Pulido
- Faculty of Biosciences, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck University of London, London, United Kingdom
| | - Ester Boix
- Faculty of Biosciences, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
10
|
Peraro L, Zou Z, Makwana KM, Cummings AE, Ball HL, Yu H, Lin YS, Levine B, Kritzer JA. Diversity-Oriented Stapling Yields Intrinsically Cell-Penetrant Inducers of Autophagy. J Am Chem Soc 2017; 139:7792-7802. [PMID: 28414223 PMCID: PMC5473019 DOI: 10.1021/jacs.7b01698] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Autophagy
is an essential pathway by which cellular and foreign
material are degraded and recycled in eukaryotic cells. Induction
of autophagy is a promising approach for treating diverse human diseases,
including neurodegenerative disorders and infectious diseases. Here,
we report the use of a diversity-oriented stapling approach to produce
autophagy-inducing peptides that are intrinsically cell-penetrant.
These peptides induce autophagy at micromolar concentrations in vitro,
have aggregate-clearing activity in a cellular model of Huntington’s
disease, and induce autophagy in vivo. Unexpectedly, the solution
structure of the most potent stapled peptide, DD5-o, revealed an α-helical
conformation in methanol, stabilized by an unusual (i,i+3) staple which cross-links two d-amino
acids. We also developed a novel assay for cell penetration that reports
exclusively on cytosolic access and used it to quantitatively compare
the cell penetration of DD5-o and other autophagy-inducing peptides.
These new, cell-penetrant autophagy inducers and their molecular details
are critical advances in the effort to understand and control autophagy.
More broadly, diversity-oriented stapling may provide a promising
alternative to polycationic sequences as a means for rendering peptides
more cell-penetrant.
Collapse
Affiliation(s)
- Leila Peraro
- Department of Chemistry, Tufts University , Medford, Massachusetts 02155, United States
| | | | - Kamlesh M Makwana
- Department of Chemistry, Tufts University , Medford, Massachusetts 02155, United States
| | - Ashleigh E Cummings
- Department of Chemistry, Tufts University , Medford, Massachusetts 02155, United States
| | | | - Hongtao Yu
- Department of Chemistry, Tufts University , Medford, Massachusetts 02155, United States
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University , Medford, Massachusetts 02155, United States
| | | | - Joshua A Kritzer
- Department of Chemistry, Tufts University , Medford, Massachusetts 02155, United States
| |
Collapse
|