1
|
Guo M, Li Z, Deng X, Luo D, Yang J, Chen Y, Xue W. ConoDL: a deep learning framework for rapid generation and prediction of conotoxins. J Comput Aided Mol Des 2024; 39:4. [PMID: 39724258 DOI: 10.1007/s10822-024-00582-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/07/2024] [Indexed: 12/28/2024]
Abstract
Conotoxins, being small disulfide-rich and bioactive peptides, manifest notable pharmacological potential and find extensive applications. However, the exploration of conotoxins' vast molecular space using traditional methods is severely limited, necessitating the urgent need of developing novel approaches. Recently, deep learning (DL)-based methods have advanced to the molecular generation of proteins and peptides. Nevertheless, the limited data and the intricate structure of conotoxins constrain the application of deep learning models in the generation of conotoxins. We propose ConoDL, a framework for the generation and prediction of conotoxins, comprising the end-to-end conotoxin generation model (ConoGen) and the conotoxin prediction model (ConoPred). ConoGen employs transfer learning and a large language model (LLM) to tackle the challenges in conotoxin generation. Meanwhile, ConoPred filters artificial conotoxins generated by ConoGen, narrowing down the scope for subsequent research. A comprehensive evaluation of the peptide properties at both sequence and structure levels indicates that the artificial conotoxins generated by ConoDL exhibit a certain degree of similarity to natural conotoxins. Furthermore, ConoDL has generated artificial conotoxins with novel cysteine scaffolds. Therefore, ConoDL may uncover new cysteine scaffolds and conotoxin molecules, facilitating further exploration of the molecular space of conotoxins and the discovery of pharmacologically active variants.
Collapse
Affiliation(s)
- Menghan Guo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Zengpeng Li
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography Ministry of Natural Resources, Xiamen, 361005, China
| | - Xuejin Deng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Ding Luo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Jingyi Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Yingjun Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
- School of Computer and Information Engineering, Shanghai Polytechnic University, Shanghai, 201219, China.
| | - Weiwei Xue
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
2
|
Li R, Hasan MM, Wang D. In Silico Conotoxin Studies: Progress and Prospects. Molecules 2024; 29:6061. [PMID: 39770149 PMCID: PMC11677113 DOI: 10.3390/molecules29246061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Cone snails of the genus Conus have evolved to produce structurally distinct and functionally diverse venom peptides for defensive and predatory purposes. This nature-devised delicacy enlightened drug discovery and for decades, the bioactive cone snail venom peptides, known as conotoxins, have been widely explored for their therapeutic potential, yet we know very little about them. With the augmentation of computational algorithms from the realms of bioinformatics and machine learning, in silico strategies have made substantial contributions to facilitate conotoxin studies although still with certain limitations. In this review, we made a bibliometric analysis of in silico conotoxin studies from 2004 to 2024 and then discussed in silico strategies to not only efficiently classify conotoxin superfamilies but also speed up drug discovery from conotoxins, reveal binding modes of known conotoxin-ion channel interactions at a microscopic level and relate the mechanisms of ion channel modulation to its underlying molecular structure. We summarized the current progress of studies in this field and gave an outlook on prospects.
Collapse
Affiliation(s)
- Ruihan Li
- Department of Chinese Medicine and Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China;
| | - Md. Mahadhi Hasan
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia;
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Dan Wang
- Department of Chinese Medicine and Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China;
| |
Collapse
|
3
|
Shekh S, Dhannura S, Dhurjad P, Ravali C, M M S, Kakkat S, Vishwajyothi, Vijayasarathy M, Sonti R, Gowd KH. Structure-aided function assignment to the transcriptomic conopeptide Am931. Toxicon 2024; 250:108087. [PMID: 39237042 DOI: 10.1016/j.toxicon.2024.108087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Implementation of the next-generation technologies for gene sequencing of venom duct transcriptome has provided a large number of peptide sequences of marine cone snails. Emerging technologies on computational platforms are now rapidly evolving for the accurate predictions of the 3D structure of the polypeptide using the primary sequence. The current report aims to integrate the information derived from these two technologies to develop the concept of structure-aided function assignment of Conus peptides. The proof of the concept was demonstrated using the transcriptomic peptide Am931 of C. amadis. The 3D structure of Am931 was computed using Density Functional Theory (DFT) and the quality of the predicted structure was confirmed using 2D NMR spectroscopy of the corresponding synthetic peptide. The computed structure of Am931 aligns with the active site motif of thioredoxins, possess catalytic disulfide conformation of (+, -)AntiRHHook and selectively modulate the N-terminal Cys3 thiol. These structural features indicate that Am931 may act as a disulfide isomerase and modulate the oxidative folding of conotoxins. Synthetic peptide Am931 provides proof-of-function by exhibiting catalytic activity on the oxidative folding of α-conotoxin ImI and improving the yield of native globular fold. The approach of integration of new technologies in the Conus peptide research may help to accelerate the discovery pipeline of new/improved conotoxin functional.
Collapse
Affiliation(s)
- Shamasoddin Shekh
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, 585367, Karnataka, India.
| | - Shweta Dhannura
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, 585367, Karnataka, India
| | - Pooja Dhurjad
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Challa Ravali
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, 585367, Karnataka, India
| | - Spoorti M M
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, 585367, Karnataka, India
| | - Sreepriya Kakkat
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, 585367, Karnataka, India
| | - Vishwajyothi
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, 585367, Karnataka, India
| | - Marimuthu Vijayasarathy
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, Karnataka, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Konkallu Hanumae Gowd
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, 585367, Karnataka, India.
| |
Collapse
|
4
|
Groome JR. Historical Perspective of the Characterization of Conotoxins Targeting Voltage-Gated Sodium Channels. Mar Drugs 2023; 21:209. [PMID: 37103349 PMCID: PMC10142487 DOI: 10.3390/md21040209] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Marine toxins have potent actions on diverse sodium ion channels regulated by transmembrane voltage (voltage-gated ion channels) or by neurotransmitters (nicotinic acetylcholine receptor channels). Studies of these toxins have focused on varied aspects of venom peptides ranging from evolutionary relationships of predator and prey, biological actions on excitable tissues, potential application as pharmacological intervention in disease therapy, and as part of multiple experimental approaches towards an understanding of the atomistic characterization of ion channel structure. This review examines the historical perspective of the study of conotoxin peptides active on sodium channels gated by transmembrane voltage, which has led to recent advances in ion channel research made possible with the exploitation of the diversity of these marine toxins.
Collapse
Affiliation(s)
- James R Groome
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA
| |
Collapse
|
5
|
Mining the Royal Jelly Proteins: Combinatorial Hexapeptide Ligand Library Significantly Improves the MS-Based Proteomic Identification in Complex Biological Samples. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26092762. [PMID: 34067143 PMCID: PMC8125745 DOI: 10.3390/molecules26092762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 12/18/2022]
Abstract
Royal jelly (RJ) is a complex, creamy secretion produced by the glands of worker bees. Due to its health-promoting properties, it is used by humans as a dietary supplement. However, RJ compounds are not fully characterized yet. Hence, in this research, we aimed to broaden the knowledge of the proteomic composition of fresh RJ. Water extracts of the samples were pre-treated using combinatorial hexapeptide ligand libraries (ProteoMinerTM kit), trypsin-digested, and analyzed by a nanoLC-MALDI-TOF/TOF MS system. To check the ProteoMinerTM performance in the MS-based protein identification, we also examined RJ extracts that were not prepared with the ProteoMinerTM kit. We identified a total of 86 proteins taxonomically classified to Apis spp. (bees). Among them, 74 proteins were detected in RJ extracts pre-treated with ProteoMinerTM kit, and only 50 proteins were found in extracts non-enriched with this technique. Ten of the identified features were hypothetical proteins whose existence has been predicted, but any experimental evidence proves their in vivo expression. Additionally, we detected four uncharacterized proteins of unknown functions. The results of this research indicate that the ProteoMinerTM strategy improves proteomic identification in complex biological samples. Broadening the knowledge of RJ composition may contribute to the development of standards and regulations, enhancing the quality of RJ, and consequently, the safety of its supplementation.
Collapse
|
6
|
Schmidt CA, Wilson DT, Cooke I, Potriquet J, Tungatt K, Muruganandah V, Boote C, Kuek F, Miles JJ, Kupz A, Ryan S, Loukas A, Bansal PS, Takjoo R, Miller DJ, Peigneur S, Tytgat J, Daly NL. Identification and Characterization of a Peptide from the Stony Coral Heliofungia actiniformis. JOURNAL OF NATURAL PRODUCTS 2020; 83:3454-3463. [PMID: 33166137 DOI: 10.1021/acs.jnatprod.0c00981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Marine organisms produce a diverse range of toxins and bioactive peptides to support predation, competition, and defense. The peptide repertoires of stony corals (order Scleractinia) remain relatively understudied despite the presence of tentacles used for predation and defense that are likely to contain a range of bioactive compounds. Here, we show that a tentacle extract from the mushroom coral, Heliofungia actiniformis, contains numerous peptides with a range of molecular weights analogous to venom profiles from species such as cone snails. Using NMR spectroscopy and mass spectrometry we characterized a 12-residue peptide (Hact-1) with a new sequence (GCHYTPFGLICF) and well-defined β-hairpin structure stabilized by a single disulfide bond. The sequence is encoded within the genome of the coral and expressed in the polyp body tissue. The structure present is common among toxins and venom peptides, but Hact-1 does not show activity against select examples of Gram-positive and Gram-negative bacteria or a range of ion channels, common properties of such peptides. Instead, it appears to have a limited effect on human peripheral blood mononuclear cells, but the ecological function of the peptide remains unknown. The discovery of this peptide from H. actiniformis is likely to be the first of many from this and related species.
Collapse
Affiliation(s)
- Casey A Schmidt
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - David T Wilson
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Ira Cooke
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Jeremy Potriquet
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
- AB Sciex, Brisbane, Queensland, Australia
| | - Katie Tungatt
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Visai Muruganandah
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Chloë Boote
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD 4811, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Felicity Kuek
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD 4811, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - John J Miles
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Stephanie Ryan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Paramjit S Bansal
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Rozita Takjoo
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - David J Miller
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD 4811, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Steve Peigneur
- Toxicology and Pharmacology, Katholieke Universiteit (KU) Leuven, Campus Gasthuisberg, Leuven, 3000, Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, Katholieke Universiteit (KU) Leuven, Campus Gasthuisberg, Leuven, 3000, Belgium
| | - Norelle L Daly
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| |
Collapse
|
7
|
Sun Z, Huang S, Zheng L, Liang P, Yang W, Zuo Y. ICTC-RAAC: An improved web predictor for identifying the types of ion channel-targeted conotoxins by using reduced amino acid cluster descriptors. Comput Biol Chem 2020; 89:107371. [PMID: 32950852 DOI: 10.1016/j.compbiolchem.2020.107371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/27/2022]
Abstract
Conotoxins are small peptide toxins which are rich in disulfide and have the unique diversity of sequences. It is significant to correctly identify the types of ion channel-targeted conotoxins because that they are considered as the optimal pharmacological candidate medicine in drug design owing to their ability specifically binding to ion channels and interfering with neural transmission. Comparing with other feature extracting methods, the reduced amino acid cluster (RAAC) better resolved in simplifying protein complexity and identifying functional conserved regions. Thus, in our study, 673 RAACs generated from 74 types of reduced amino acid alphabet were comprehensively assessed to establish a state-of-the-art predictor for predicting ion channel-targeted conotoxins. The results showed Type 20, Cluster 9 (T = 20, C = 9) in the tripeptide composition (N = 3) achieved the best accuracy, 89.3%, which was based on the algorithm of amino acids reduction of variance maximization. Further, the ANOVA with incremental feature selection (IFS) was used for feature selection to improve prediction performance. Finally, the cross-validation results showed that the best overall accuracy we calculated was 96.4% and 1.8% higher than the best accuracy of previous studies. Based on the predictor we proposed, a user-friendly webserver was established and can be friendly accessed at http://bioinfor.imu.edu.cn/ictcraac.
Collapse
Affiliation(s)
- Zijie Sun
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China; School of Mathematical Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Shenghui Huang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Lei Zheng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Pengfei Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Wuritu Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| | - Yongchun Zuo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
8
|
Rajesh RP, Franklin JB, Badsha I, Arjun P, Jain RP, Vignesh MS, Kannan RR. Proteome based de novo sequencing of novel conotoxins from marine molluscivorous cone snail Conus amadis and neurological activities of its natural venom in zebrafish model. Protein Pept Lett 2019; 26:819-833. [PMID: 31203793 DOI: 10.2174/0929866526666190614144006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/09/2019] [Accepted: 04/19/2019] [Indexed: 11/22/2022]
Abstract
Conus amadis is a carnivorous snail found abundantly in coastal waters of India. They are equipped with potent chemical arsenal made of neurotoxic peptide concoction used for predation and competition. In this study, we have identified 19 novel conotoxins containing 1, 2 & 3 disulfides, belonging to different classes, from a molluscivorous cone snail Conus amadis using proteome based MALDI-TOF and LC-MS-MS analysis. Among them, 2 novel contryphans, 3 T-superfamily conotoxin, 2 A-superfamily conotoxins and 2 Mini M-Superfamily conotoxins were sequenced to its amino acid level from the fragmented spectrum of singly and doubly charged parent ions using de novo sequencing strategies. ama1054, a contryphan peptide toxin, possesses post translationally modified bromo tryptophan at its seventh position. Except ama1251, all the sequenced peptide toxins possess modified C-terminal amidation. Moreover, we have screened the crude venom for the presence of biological function in zebrafish model. Crude venom exhibited anticonvulsant properties in pentylenetetrazole-induced seizure in zebrafish larvae which suggested anti-epileptic properties of the venom cocktail. Acetyl cholinesterase activity was also identified in the venom complex.
Collapse
Affiliation(s)
- R P Rajesh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012. India
| | - Jayaseelan Benjamin Franklin
- Andaman and Nicobar Centre for Ocean Science and Technology, National Institute of Ocean Technology, Ministry of Earth Sciences, Government of India, Port Blair 744103. India
| | - Iffath Badsha
- Molecular & Nanomedicine Research Unit, Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119. India
| | - P Arjun
- Molecular & Nanomedicine Research Unit, Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119. India
| | - Ruchi P Jain
- Molecular & Nanomedicine Research Unit, Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119. India
| | - M S Vignesh
- Molecular & Nanomedicine Research Unit, Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119. India
| | - R Rajesh Kannan
- Molecular & Nanomedicine Research Unit, Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119. India
| |
Collapse
|
9
|
Mansbach RA, Travers T, McMahon BH, Fair JM, Gnanakaran S. Snails In Silico: A Review of Computational Studies on the Conopeptides. Mar Drugs 2019; 17:E145. [PMID: 30832207 PMCID: PMC6471681 DOI: 10.3390/md17030145] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/26/2022] Open
Abstract
Marine cone snails are carnivorous gastropods that use peptide toxins called conopeptides both as a defense mechanism and as a means to immobilize and kill their prey. These peptide toxins exhibit a large chemical diversity that enables exquisite specificity and potency for target receptor proteins. This diversity arises in terms of variations both in amino acid sequence and length, and in posttranslational modifications, particularly the formation of multiple disulfide linkages. Most of the functionally characterized conopeptides target ion channels of animal nervous systems, which has led to research on their therapeutic applications. Many facets of the underlying molecular mechanisms responsible for the specificity and virulence of conopeptides, however, remain poorly understood. In this review, we will explore the chemical diversity of conopeptides from a computational perspective. First, we discuss current approaches used for classifying conopeptides. Next, we review different computational strategies that have been applied to understanding and predicting their structure and function, from machine learning techniques for predictive classification to docking studies and molecular dynamics simulations for molecular-level understanding. We then review recent novel computational approaches for rapid high-throughput screening and chemical design of conopeptides for particular applications. We close with an assessment of the state of the field, emphasizing important questions for future lines of inquiry.
Collapse
Affiliation(s)
- Rachael A Mansbach
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Timothy Travers
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Benjamin H McMahon
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Jeanne M Fair
- Biosecurity and Public Health Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - S Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| |
Collapse
|
10
|
Neurobiology and therapeutic applications of neurotoxins targeting transmitter release. Pharmacol Ther 2019; 193:135-155. [DOI: 10.1016/j.pharmthera.2018.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Affiliation(s)
- Varsha J. Thombare
- School of ChemistryThe University of MelbourneVictoria3010 Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of MelbourneVictoria3010 Australia
| | - Craig A. Hutton
- School of ChemistryThe University of MelbourneVictoria3010 Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of MelbourneVictoria3010 Australia
| |
Collapse
|
12
|
Dao FY, Yang H, Su ZD, Yang W, Wu Y, Hui D, Chen W, Tang H, Lin H. Recent Advances in Conotoxin Classification by Using Machine Learning Methods. Molecules 2017; 22:molecules22071057. [PMID: 28672838 PMCID: PMC6152242 DOI: 10.3390/molecules22071057] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/12/2017] [Accepted: 06/19/2017] [Indexed: 11/16/2022] Open
Abstract
Conotoxins are disulfide-rich small peptides, which are invaluable peptides that target ion channel and neuronal receptors. Conotoxins have been demonstrated as potent pharmaceuticals in the treatment of a series of diseases, such as Alzheimer's disease, Parkinson's disease, and epilepsy. In addition, conotoxins are also ideal molecular templates for the development of new drug lead compounds and play important roles in neurobiological research as well. Thus, the accurate identification of conotoxin types will provide key clues for the biological research and clinical medicine. Generally, conotoxin types are confirmed when their sequence, structure, and function are experimentally validated. However, it is time-consuming and costly to acquire the structure and function information by using biochemical experiments. Therefore, it is important to develop computational tools for efficiently and effectively recognizing conotoxin types based on sequence information. In this work, we reviewed the current progress in computational identification of conotoxins in the following aspects: (i) construction of benchmark dataset; (ii) strategies for extracting sequence features; (iii) feature selection techniques; (iv) machine learning methods for classifying conotoxins; (v) the results obtained by these methods and the published tools; and (vi) future perspectives on conotoxin classification. The paper provides the basis for in-depth study of conotoxins and drug therapy research.
Collapse
Affiliation(s)
- Fu-Ying Dao
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Hui Yang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Zhen-Dong Su
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Wuritu Yang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
- Development and Planning Department, Inner Mongolia University, Hohhot 010021, China.
| | - Yun Wu
- College of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China.
| | - Ding Hui
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Wei Chen
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
- Department of Physics, School of Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan 063000, China.
| | - Hua Tang
- Department of Pathophysiology, Southwest Medical University, Luzhou 646000, China.
| | - Hao Lin
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
13
|
Franklin JB, Rajesh RP, Vinithkumar NV, Kirubagaran R. Identification of short single disulfide-containing contryphans from the venom of cone snails using de novo mass spectrometry-based sequencing methods. Toxicon 2017; 132:50-54. [PMID: 28400262 DOI: 10.1016/j.toxicon.2017.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Jayaseelan Benjamin Franklin
- Andaman and Nicobar Centre for Ocean Science and Technology, National Institute of Ocean Technology, Ministry of Earth Sciences, Government of India, Dollygunj, Port Blair 744103, India.
| | | | - Nambali Valsalan Vinithkumar
- Andaman and Nicobar Centre for Ocean Science and Technology, National Institute of Ocean Technology, Ministry of Earth Sciences, Government of India, Dollygunj, Port Blair 744103, India
| | - Ramalingam Kirubagaran
- Marine Biotechnology Division, Ocean Science and Technology for Islands, National Institute of Ocean Technology, Ministry of Earth Sciences, Government of India, Pallikaranai, Chennai 600100, India
| |
Collapse
|
14
|
Vijayasarathy M, Basheer SM, Franklin JB, Balaram P. Contryphan Genes and Mature Peptides in the Venom of Nine Cone Snail Species by Transcriptomic and Mass Spectrometric Analysis. J Proteome Res 2016; 16:763-772. [DOI: 10.1021/acs.jproteome.6b00776] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Soorej M. Basheer
- Molecular
Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Jayaseelan Benjamin Franklin
- Andaman
and Nicobar Centre for Ocean Science and Technology, Earth System
Sciences Organisation-National Institute of Ocean Technology, Ministry of Earth Sciences, Government of India, Port Blair 744103, India
| | - Padmanabhan Balaram
- Molecular
Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
15
|
Román-González SA, Robles-Gómez EE, Reyes J, Bernáldez J, Cortés-Guzmán F, Martínez-Mayorga K, Lazcano-Pérez F, Licea A, Arreguín-Espinosa R. A 3D structural model of RsXXVIA, an ω-conotoxin. Struct Chem 2016. [DOI: 10.1007/s11224-016-0877-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Arola S, Linder MB. Binding of cellulose binding modules reveal differences between cellulose substrates. Sci Rep 2016; 6:35358. [PMID: 27748440 PMCID: PMC5066208 DOI: 10.1038/srep35358] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/28/2016] [Indexed: 11/20/2022] Open
Abstract
The interaction between cellulase enzymes and their substrates is of central importance to several technological and scientific challenges. Here we report that the binding of cellulose binding modules (CBM) from Trichoderma reesei cellulases Cel6A and Cel7A show a major difference in how they interact with substrates originating from wood compared to bacterial cellulose. We found that the CBM from TrCel7A recognizes the two substrates differently and as a consequence shows an unexpected way of binding. We show that the substrate has a large impact on the exchange rate of the studied CBM, and moreover, CBM-TrCel7A seems to have an additional mode of binding on wood derived cellulose but not on cellulose originating from bacterial source. This mode is not seen in double CBM (DCBM) constructs comprising both CBM-TrCel7A and CBM-TrCel6A. The linker length of DCBMs affects the binding properties, and slows down the exchange rates of the proteins and thus, can be used to analyze the differences between the single CBM. These results have impact on the cellulase research and offer new understanding on how these industrially relevant enzymes act.
Collapse
Affiliation(s)
- Suvi Arola
- School of Science, Aalto University, P. O. Box 11100, FI-00076, Aalto, Finland
- School of Chemical Technology, Aalto University, P.O. Box 16100, FI-00076, Aalto, Finland
- VTT, Technical Research Centre of Finland, Bio and process technology, P.O.Box 1000, FIN–02044 VTT, Finland
| | - Markus B. Linder
- School of Chemical Technology, Aalto University, P.O. Box 16100, FI-00076, Aalto, Finland
| |
Collapse
|
17
|
Lin B, Xiang S, Li M. Residues Responsible for the Selectivity of α-Conotoxins for Ac-AChBP or nAChRs. Mar Drugs 2016; 14:173. [PMID: 27727162 PMCID: PMC5082321 DOI: 10.3390/md14100173] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 12/22/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are targets for developing new drugs to treat severe pain, nicotine addiction, Alzheimer disease, epilepsy, etc. α-Conotoxins are biologically and chemically diverse. With 12-19 residues and two disulfides, they can be specifically selected for different nAChRs. Acetylcholine-binding proteins from Aplysia californica (Ac-AChBP) are homologous to the ligand-binding domains of nAChRs and pharmacologically similar. X-ray structures of the α-conotoxin in complex with Ac-AChBP in addition to computer modeling have helped to determine the binding site of the important residues of α-conotoxin and its affinity for nAChR subtypes. Here, we present the various α-conotoxin residues that are selective for Ac-AChBP or nAChRs by comparing the structures of α-conotoxins in complex with Ac-AChBP and by modeling α-conotoxins in complex with nAChRs. The knowledge of these binding sites will assist in the discovery and design of more potent and selective α-conotoxins as drug leads.
Collapse
Affiliation(s)
- Bo Lin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan, China.
- Institution of Tumor, Hainan Medical College, Haikou 570102, Hainan, China.
| | - Shihua Xiang
- Nebraska Center for Virology, School of Veterinary Medicine and Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan, China.
- Institution of Tumor, Hainan Medical College, Haikou 570102, Hainan, China.
| |
Collapse
|
18
|
Identifying the Types of Ion Channel-Targeted Conotoxins by Incorporating New Properties of Residues into Pseudo Amino Acid Composition. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3981478. [PMID: 27631006 PMCID: PMC5008028 DOI: 10.1155/2016/3981478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 07/31/2016] [Indexed: 12/31/2022]
Abstract
Conotoxins are a kind of neurotoxin which can specifically interact with potassium, sodium type, and calcium channels. They have become potential drug candidates to treat diseases such as chronic pain, epilepsy, and cardiovascular diseases. Thus, correctly identifying the types of ion channel-targeted conotoxins will provide important clue to understand their function and find potential drugs. Based on this consideration, we developed a new computational method to rapidly and accurately predict the types of ion-targeted conotoxins. Three kinds of new properties of residues were proposed to use in pseudo amino acid composition to formulate conotoxins samples. The support vector machine was utilized as classifier. A feature selection technique based on F-score was used to optimize features. Jackknife cross-validated results showed that the overall accuracy of 94.6% was achieved, which is higher than other published results, demonstrating that the proposed method is superior to published methods. Hence the current method may play a complementary role to other existing methods for recognizing the types of ion-target conotoxins.
Collapse
|
19
|
Using the SMOTE technique and hybrid features to predict the types of ion channel-targeted conotoxins. J Theor Biol 2016; 403:75-84. [DOI: 10.1016/j.jtbi.2016.04.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 04/25/2016] [Accepted: 04/29/2016] [Indexed: 12/22/2022]
|
20
|
Banerjee J, Yongye AB, Chang YP, Gyanda R, Medina-Franco JL, Armishaw CJ. Design and synthesis of α-conotoxin GID analogues as selective α4β2 nicotinic acetylcholine receptor antagonists. Biopolymers 2016; 102:78-87. [PMID: 24122487 DOI: 10.1002/bip.22413] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 08/30/2013] [Accepted: 09/09/2013] [Indexed: 01/01/2023]
Abstract
The α4β2 nicotinic acetylcholine receptor (nAChR) is an important target for currently approved smoking cessation therapeutics. However, the development of highly selective α4β2 nAChR antagonists remains a significant challenge. α-Conotoxin GID is an antagonist of α4β2 nAChRs, though it is significantly more potent toward the α3β2 and α7 subtypes. With the goal of obtaining further insights into α-conotoxin GID/nAChR interactions that could lead to the design of GID analogues with improved affinity for α4β2 nAChRs, we built a homology model of the GID/α4β2 complex using an X-ray co-crystal structure of an α-conotoxin/acetylcholine binding protein (AChBP) complex. Several additional interactions that could potentially enhance the affinity of GID for α4β2 nAChRs were observed in our model, which led to the design and synthesis of 22 GID analogues. Seven analogues displayed inhibitory activity toward α4β2 nAChRs that was comparable to GID. Significantly, both GID[A10S] and GID[V13I] demonstrated moderately improved selectivity toward α4β2 over α3β2 when compared with GID, while GID[V18N] exhibited no measurable inhibitory activity for the α3β2 subtype, yet retained inhibitory activity for α4β2. In this regard, GID[V18N] is the most α4β2 nAChR selective α-conotoxin analogue identified to date.
Collapse
Affiliation(s)
- Jayati Banerjee
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL, 34987
| | | | | | | | | | | |
Collapse
|
21
|
Roy D, Lakshminarayanan M. Scrambling of disulfide bond scaffolds in neurotoxin AuIB: A molecular dynamics simulation study. Biopolymers 2016; 106:196-209. [DOI: 10.1002/bip.22799] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/05/2015] [Accepted: 12/18/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Durba Roy
- Department of Chemistry; Birla Institute of Technology and Science-Pilani; Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal Hyderabad Telangana 500078 India
| | - Madhavkrishnan Lakshminarayanan
- Department of Chemistry; Birla Institute of Technology and Science-Pilani; Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal Hyderabad Telangana 500078 India
| |
Collapse
|
22
|
Eisapoor SS, Jamili S, Shahbazzadeh D, Ghavam Mostafavi P, Pooshang Bagheri K. A New, High Yield, Rapid, and Cost-Effective Protocol to Deprotection of Cysteine-Rich Conopeptide, Omega-Conotoxin MVIIA. Chem Biol Drug Des 2016; 87:687-93. [DOI: 10.1111/cbdd.12702] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 11/22/2015] [Accepted: 11/24/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Seyed Sahand Eisapoor
- Department of Marine Biology; Faculty of Marine Sciences and Technologies, Science and Research Branch; Islamic Azad University; Tehran Iran
| | - Shahla Jamili
- Department of Marine Biology; Faculty of Marine Sciences and Technologies, Science and Research Branch; Islamic Azad University; Tehran Iran
| | - Delavar Shahbazzadeh
- Biotechnology Research Center; Medical Biotechnology Department; Venom and Biotherapeutics Molecules Lab; Pasteur Institute of Iran; Tehran Iran
| | - Pargol Ghavam Mostafavi
- Department of Marine Biology; Faculty of Marine Sciences and Technologies, Science and Research Branch; Islamic Azad University; Tehran Iran
| | - Kamran Pooshang Bagheri
- Biotechnology Research Center; Medical Biotechnology Department; Venom and Biotherapeutics Molecules Lab; Pasteur Institute of Iran; Tehran Iran
| |
Collapse
|
23
|
Sharma H, Nagaraj R. Human β-defensin 4 with non-native disulfide bridges exhibit antimicrobial activity. PLoS One 2015; 10:e0119525. [PMID: 25785690 PMCID: PMC4364940 DOI: 10.1371/journal.pone.0119525] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/14/2015] [Indexed: 01/05/2023] Open
Abstract
Human defensins play multiple roles in innate immunity including direct antimicrobial killing and immunomodulatory activity. They have three disulfide bridges which contribute to the stability of three anti-parallel β-strands. The exact role of disulfide bridges and canonical β-structure in the antimicrobial action is not yet fully understood. In this study, we have explored the antimicrobial activity of human β-defensin 4 (HBD4) analogs that differ in the number and connectivity of disulfide bridges. The cysteine framework was similar to the disulfide bridges present in μ-conotoxins, an unrelated class of peptide toxins. All the analogs possessed enhanced antimicrobial potency as compared to native HBD4. Among the analogs, the single disulfide bridged peptide showed maximum potency. However, there were no marked differences in the secondary structure of the analogs. Subtle variations were observed in the localization and membrane interaction of the analogs with bacteria and Candida albicans, suggesting a role for disulfide bridges in modulating their antimicrobial action. All analogs accumulated in the cytosol where they can bind to anionic molecules such as nucleic acids which would affect several cellular processes leading to cell death. Our study strongly suggests that native disulfide bridges or the canonical β-strands in defensins have not evolved for maximal activity but they play important roles in determining their antimicrobial potency.
Collapse
Affiliation(s)
- Himanshu Sharma
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| | - Ramakrishnan Nagaraj
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
- * E-mail:
| |
Collapse
|
24
|
Böhm M, Bäuml CA, Hardes K, Steinmetzer T, Roeser D, Schaub Y, Than ME, Biswas A, Imhof D. Novel Insights into Structure and Function of Factor XIIIa-Inhibitor Tridegin. J Med Chem 2014; 57:10355-65. [DOI: 10.1021/jm501058g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Miriam Böhm
- Pharmaceutical
Chemistry I, Institute of Pharmacy, University of Bonn, Brühler
Str. 7, 53119 Bonn, Germany
| | - Charlotte A. Bäuml
- Pharmaceutical
Chemistry I, Institute of Pharmacy, University of Bonn, Brühler
Str. 7, 53119 Bonn, Germany
| | - Kornelia Hardes
- Department
of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University of Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Torsten Steinmetzer
- Department
of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University of Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Dirk Roeser
- Protein
Crystallography Group, Leibniz Institute for Age Research—Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Yvonne Schaub
- Protein
Crystallography Group, Leibniz Institute for Age Research—Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Manuel E. Than
- Protein
Crystallography Group, Leibniz Institute for Age Research—Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Arijit Biswas
- Institute
of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Diana Imhof
- Pharmaceutical
Chemistry I, Institute of Pharmacy, University of Bonn, Brühler
Str. 7, 53119 Bonn, Germany
| |
Collapse
|
25
|
Akondi KB, Muttenthaler M, Dutertre S, Kaas Q, Craik DJ, Lewis RJ, Alewood PF. Discovery, synthesis, and structure-activity relationships of conotoxins. Chem Rev 2014; 114:5815-47. [PMID: 24720541 PMCID: PMC7610532 DOI: 10.1021/cr400401e] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Sébastien Dutertre
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
26
|
iCTX-type: a sequence-based predictor for identifying the types of conotoxins in targeting ion channels. BIOMED RESEARCH INTERNATIONAL 2014; 2014:286419. [PMID: 24991545 PMCID: PMC4058692 DOI: 10.1155/2014/286419] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/22/2014] [Accepted: 05/07/2014] [Indexed: 11/30/2022]
Abstract
Conotoxins are small disulfide-rich neurotoxic peptides, which can bind to ion channels with very high specificity and modulate their activities. Over the last few decades, conotoxins have been the drug candidates for treating chronic pain, epilepsy, spasticity, and cardiovascular diseases. According to their functions and targets, conotoxins are generally categorized into three types: potassium-channel type, sodium-channel type, and calcium-channel types. With the avalanche of peptide sequences generated in the postgenomic age, it is urgent and challenging to develop an automated method for rapidly and accurately identifying the types of conotoxins based on their sequence information alone. To address this challenge, a new predictor, called iCTX-Type, was developed by incorporating the dipeptide occurrence frequencies of a conotoxin sequence into a 400-D (dimensional) general pseudoamino acid composition, followed by the feature optimization procedure to reduce the sample representation from 400-D to 50-D vector. The overall success rate achieved by iCTX-Type via a rigorous cross-validation was over 91%, outperforming its counterpart (RBF network). Besides, iCTX-Type is so far the only predictor in this area with its web-server available, and hence is particularly useful for most experimental scientists to get their desired results without the need to follow the complicated mathematics involved.
Collapse
|
27
|
Sonti R, Rao KNS, Chidanand S, Gowd KH, Raghothama S, Balaram P. Conformational Analysis of a 20-Membered Cyclic Peptide Disulfide fromConus virgowith a WPW Segment: Evidence for an Aromatic-Proline Sandwich. Chemistry 2014; 20:5075-86. [DOI: 10.1002/chem.201303687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Indexed: 11/06/2022]
|
28
|
Kövér KE, Batta G. NMR investigation of disulfide containing peptides and proteins. AMINO ACIDS, PEPTIDES AND PROTEINS 2013:37-59. [DOI: 10.1039/9781849737081-00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Peptides and proteins with disulfide bonds are abundant in all kingdoms and play essential role in many biological events. Because small disulfide-rich peptides (proteins) are usually difficult to crystallize, nuclear magnetic resonance (NMR) is by far one of the most powerful techniques for the determination of their solution structure. Besides the “static” three-dimensional structure, NMR has unique opportunities to acquire additional information about molecular dynamics and folding at atomic resolution. Nowadays it is becoming increasingly evident, that “excited”, “disordered” or “fuzzy” protein states may exhibit biological function and disulfide proteins are also promising targets for such studies. In this short two-three years overview those disulfide peptides and proteins were cited from the literature that were studied by NMR. Though we may have missed some, their structural diversity and complexity as well as their wide repertoire of biological functions is impressive. We emphasised especially antimicrobial peptides and peptide based toxins in addition to some biologically important other structures. Besides the general NMR methods we reviewed some contemporary techniques suitable for disclosing the peculiar properties of disulfide bonds. Interesting dynamics and folding studies of disulfide proteins were also mentioned. It is important to disclose the essential structure, dynamics, function aspects of disulfide proteins since this aids the design of new compounds with improved activity and reduced toxicity. Undoubtedly, NMR has the potential to accelerate the development of new disulfide peptides/proteins with pharmacological activity.
Collapse
|
29
|
Sonti R, Gowd KH, Rao KNS, Ragothama S, Rodriguez A, Perez JJ, Balaram P. Conformational Diversity in Contryphans fromConusVenom:cis-transIsomerisation and Aromatic/Proline Interactions in the 23-Membered Ring of a 7-Residue Peptide Disulfide Loop. Chemistry 2013; 19:15175-89. [DOI: 10.1002/chem.201301722] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Indexed: 11/05/2022]
|
30
|
Cervantes-Luevano KE, Bernaldez J, Licea A. Effect of two synthetic disulfide bond variants of a 13-mer toxin from Conus californicus on the transcription of pro-inflammatory cytokines induced by LPS. Toxicon 2013; 70:82-5. [PMID: 23624384 DOI: 10.1016/j.toxicon.2013.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 04/13/2013] [Accepted: 04/16/2013] [Indexed: 12/15/2022]
Abstract
This study presents the effects of two synthetic disulfide bond variants of cal16b, a 13-mer Ca²⁺ channel blocker conotoxin, on pro- and anti-inflammatory cytokine gene transcription in the murine macrophage-like cell line J774A.1 stimulated with LPS. The globular form (cal16b_1) acted as an anti-inflammatory agent; in contrast, the ribbon disulfide variant (cal16b_2) had a pro-inflammatory effect. Our results suggest that the pro- and anti-inflammatory effects are mediated by the three-dimensional structure.
Collapse
Affiliation(s)
- K E Cervantes-Luevano
- Marine Science Faculty, Universidad Autónoma de Baja California-UABC, Km 103, Carretera Tijuana-Ensenada, CP. 22800 Ensenada, B.C., México
| | | | | |
Collapse
|
31
|
Vink S, Alewood PF. Targeting voltage-gated calcium channels: developments in peptide and small-molecule inhibitors for the treatment of neuropathic pain. Br J Pharmacol 2013; 167:970-89. [PMID: 22725651 DOI: 10.1111/j.1476-5381.2012.02082.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Chronic pain affects approximately 20% of people worldwide and places a large economic and social burden on society. Despite the availability of a range of analgesics, this condition is inadequately treated, with complete alleviation of symptoms rarely occurring. In the past 30 years, the voltage-gated calcium channels (VGCCs) have been recognized as potential targets for analgesic development. Although the majority of the research has been focused on Ca(v) 2.2 in particular, other VGCC subtypes such as Ca(v) 3.2 have recently come to the forefront of analgesic research. Venom peptides from marine cone snails have been proven to be a valuable tool in neuroscience, playing a major role in the identification and characterization of VGCC subtypes and producing the first conotoxin-based drug on the market, the ω-conotoxin, ziconotide. This peptide potently and selectively inhibits Ca(v) 2.2, resulting in analgesia in chronic pain states. However, this drug is only available via intrathecal administration, and adverse effects and a narrow therapeutic window have limited its use in the clinic. Other Ca(v) 2.2 inhibitors are currently in development and offer the promise of an improved route of administration and safety profile. This review assesses the potential of targeting VGCCs for analgesic development, with a main focus on conotoxins that block Ca(v) 2.2 and the developments made to transform them into therapeutics.
Collapse
Affiliation(s)
- S Vink
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | | |
Collapse
|
32
|
Prediction of the types of ion channel-targeted conotoxins based on radial basis function network. Toxicol In Vitro 2013; 27:852-6. [DOI: 10.1016/j.tiv.2012.12.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 12/06/2012] [Accepted: 12/22/2012] [Indexed: 11/20/2022]
|
33
|
A novel inhibitor of α9α10 nicotinic acetylcholine receptors from Conus vexillum delineates a new conotoxin superfamily. PLoS One 2013; 8:e54648. [PMID: 23382933 PMCID: PMC3559828 DOI: 10.1371/journal.pone.0054648] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 12/13/2012] [Indexed: 11/19/2022] Open
Abstract
Conotoxins (CTxs) selectively target a range of ion channels and receptors, making them widely used tools for probing nervous system function. Conotoxins have been previously grouped into superfamilies according to signal sequence and into families based on their cysteine framework and biological target. Here we describe the cloning and characterization of a new conotoxin, from Conus vexillum, named αB-conotoxin VxXXIVA. The peptide does not belong to any previously described conotoxin superfamily and its arrangement of Cys residues is unique among conopeptides. Moreover, in contrast to previously characterized conopeptide toxins, which are expressed initially as prepropeptide precursors with a signal sequence, a ‘‘pro’’ region, and the toxin-encoding region, the precursor sequence of αB-VxXXIVA lacks a ‘‘pro’’ region. The predicted 40-residue mature peptide, which contains four Cys, was synthesized in each of the three possible disulfide arrangements. Investigation of the mechanism of action of αB-VxXXIVA revealed that the peptide is a nicotinic acetylcholine receptor (nAChR) antagonist with greatest potency against the α9α10 subtype. 1H nuclear magnetic resonance (NMR) spectra indicated that all three αB-VxXXIVA isomers were poorly structured in aqueous solution. This was consistent with circular dichroism (CD) results which showed that the peptides were unstructured in buffer, but adopted partially helical conformations in aqueous trifluoroethanol (TFE) solution. The α9α10 nAChR is an important target for the development of analgesics and cancer chemotherapeutics, and αB-VxXXIVA represents a novel ligand with which to probe the structure and function of this protein.
Collapse
|
34
|
Adams DJ, Callaghan B, Berecki G. Analgesic conotoxins: block and G protein-coupled receptor modulation of N-type (Ca(V) 2.2) calcium channels. Br J Pharmacol 2012; 166:486-500. [PMID: 22091786 DOI: 10.1111/j.1476-5381.2011.01781.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Conotoxins (conopeptides) are small disulfide bonded peptides from the venom of marine cone snails. These peptides target a wide variety of membrane receptors, ion channels and transporters, and have enormous potential for a range of pharmaceutical applications. Structurally related ω-conotoxins bind directly to and selectively inhibit neuronal (N)-type voltage-gated calcium channels (VGCCs) of nociceptive primary afferent neurones. Among these, ω-conotoxin MVIIA (Prialt) is approved by the Food and Drug Administration (FDA) as an alternative intrathecal analgesic for the management of chronic intractable pain, particularly in patients refractory to opioids. A series of newly discovered ω-conotoxins from Conus catus, including CVID-F, are potent and selective antagonists of N-type VGCCs. In spinal cord slices, these peptides reversibly inhibit excitatory synaptic transmission between primary afferents and dorsal horn superficial lamina neurones, and in the rat partial sciatic nerve ligation model of neuropathic pain, significantly reduce allodynic behaviour. Another family of conotoxins, the α-conotoxins, are competitive antagonists of mammalian nicotinic acetylcholine receptors (nAChRs). α-Conotoxins Vc1.1 and RgIA possess two disulfide bonds and are currently in development as a treatment for neuropathic pain. It was initially proposed that the primary target of these peptides is the α9α10 neuronal nAChR. Surprisingly, however, α-conotoxins Vc1.1, RgIA and PeIA more potently inhibit N-type VGCC currents via a GABA(B) GPCR mechanism in rat sensory neurones. This inhibition is largely voltage-independent and involves complex intracellular signalling. Understanding the molecular mechanisms of conotoxin action will lead to new ways to regulate VGCC block and modulation in normal and diseased states of the nervous system.
Collapse
Affiliation(s)
- David J Adams
- Health Innovations Research Institute, RMIT University, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
35
|
Molecular phylogeny, classification and evolution of conopeptides. J Mol Evol 2012; 74:297-309. [PMID: 22760645 DOI: 10.1007/s00239-012-9507-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 06/12/2012] [Indexed: 10/28/2022]
Abstract
Conopeptides are toxins expressed in the venom duct of cone snails (Conoidea, Conus). These are mostly well-structured peptides and mini-proteins with high potency and selectivity for a broad range of cellular targets. In view of these properties, they are widely used as pharmacological tools and many are candidates for innovative drugs. The conopeptides are primarily classified into superfamilies according to their peptide signal sequence, a classification that is thought to reflect the evolution of the multigenic system. However, this hypothesis has never been thoroughly tested. Here we present a phylogenetic analysis of 1,364 conopeptide signal sequences extracted from GenBank. The results validate the current conopeptide superfamily classification, but also reveal several important new features. The so-called "cysteine-poor" conopeptides are revealed to be closely related to "cysteine-rich" conopeptides; with some of them sharing very similar signal sequences, suggesting that a distinction based on cysteine content and configuration is not phylogenetically relevant and does not reflect the evolutionary history of conopeptides. A given cysteine pattern or pharmacological activity can be found across different superfamilies. Furthermore, a few conopeptides from GenBank do not cluster in any of the known superfamilies, and could represent yet-undefined superfamilies. A clear phylogenetically based classification should help to disentangle the diversity of conopeptides, and could also serve as a rationale to understand the evolution of the toxins in the numerous other species of conoideans and venomous animals at large.
Collapse
|
36
|
Abstract
Peptide-based toxins have attracted much attention in recent years for their exciting potential applications in drug design and development. This interest has arisen because toxins are highly potent and selectively target a range of physiologically important receptors. However, peptides suffer from a number of disadvantages, including poor in vivo stability and poor bioavailability. A number of naturally occurring cyclic peptides have been discovered in plants, animals, and bacteria that have exceptional stability and potentially ameliorate these disadvantages. The lessons learned from studies of the structures, stabilities, and biological activities of these cyclic peptides can be applied to the reengineering of toxins that are not naturally cyclic but are amenable to cyclization. In this chapter, we describe solid-phase chemical synthetic methods for the reengineering of peptide toxins to improve their suitability as therapeutic, diagnostic, or imaging agents. The focus is on small disulfide-rich peptides from the venoms of cone snails and scorpions, but the technology is potentially widely applicable to a number of other peptide-based toxins.
Collapse
Affiliation(s)
- Richard J Clark
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | | |
Collapse
|
37
|
Daly NL, Rosengren KJ, Troeira Henriques S, Craik DJ. NMR and protein structure in drug design: application to cyclotides and conotoxins. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:359-70. [DOI: 10.1007/s00249-011-0672-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Revised: 12/28/2010] [Accepted: 01/03/2011] [Indexed: 01/14/2023]
|
38
|
Elliger CA, Richmond TA, Lebaric ZN, Pierce NT, Sweedler JV, Gilly WF. Diversity of conotoxin types from Conus californicus reflects a diversity of prey types and a novel evolutionary history. Toxicon 2010; 57:311-22. [PMID: 21172372 DOI: 10.1016/j.toxicon.2010.12.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 12/06/2010] [Accepted: 12/10/2010] [Indexed: 11/26/2022]
Abstract
Most species within the genus Conus are considered to be specialists in their consumption of prey, typically feeding on molluscs, vermiform invertebrates or fish, and employ peptide toxins to immobilize prey. Conus californicus Hinds 1844 atypically utilizes a wide range of food sources from all three groups. Using DNA- and protein-based methods, we analyzed the molecular diversity of C. californicus toxins and detected a correspondingly large number of conotoxin types. We identified cDNAs corresponding to seven known cysteine-frameworks containing over 40 individual inferred peptides. Additionally, we found a new framework (22) with six predicted peptide examples, along with two forms of a new peptide type of unusual length. Analysis of leader sequences allowed assignment to known superfamilies in only half of the cases, and several of these showed a framework that was not in congruence with the identified superfamily. Mass spectrometric examination of chromatographic fractions from whole venom served to identify peptides corresponding to a number of cDNAs, in several cases differing in their degree of posttranslational modification. This suggests differential or incomplete biochemical processing of these peptides. In general, it is difficult to fit conotoxins from C. californicus into established toxin classification schemes. We hypothesize that the novel structural modifications of individual peptides and their encoding genes reflect evolutionary adaptation to prey species of an unusually wide range as well as the large phylogenetic distance between C. californicus and Indo-Pacific species.
Collapse
Affiliation(s)
- C A Elliger
- Hopkins Marine Station, Stanford University, 120 Oceanview Blvd., Pacific Grove, CA 93950, USA
| | | | | | | | | | | |
Collapse
|
39
|
Gupta K, Kumar M, Balaram P. Disulfide Bond Assignments by Mass Spectrometry of Native Natural Peptides: Cysteine Pairing in Disulfide Bonded Conotoxins. Anal Chem 2010; 82:8313-9. [DOI: 10.1021/ac101867e] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Kallol Gupta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India, and National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore-560065, India
| | - Mukesh Kumar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India, and National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore-560065, India
| | - Padmanabhan Balaram
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India, and National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore-560065, India
| |
Collapse
|
40
|
Xu J, Wang Y, Zhang B, Wang B, Du W. Stereochemistry of 4-hydroxyproline affects the conformation of conopeptides. Chem Commun (Camb) 2010; 46:5467-9. [PMID: 20428585 DOI: 10.1039/c0cc00075b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cis/trans isomerization of 4-hydroxyproline is shown to remarkably affect the conformation of conopeptides with or without disulfide bonds.
Collapse
Affiliation(s)
- Jia Xu
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | | | | | | | | |
Collapse
|
41
|
Wu XC, Zhou M, Peng C, Shao XX, Guo ZY, Chi CW. Novel conopeptides in a form of disulfide-crosslinked dimer. Peptides 2010; 31:1001-6. [PMID: 20307606 DOI: 10.1016/j.peptides.2010.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 03/04/2010] [Accepted: 03/04/2010] [Indexed: 11/15/2022]
Abstract
In our present work, seven conotoxins and conopeptides were cloned from four cone snail species based on the M-superfamily signal peptides. Among them, two conopeptides, Vt3.1 and Vt3.2, showed unusual sequence characteristics. Both of them contained two cysteines that are separated by just one non-cysteine residue. In vitro, the chemically synthesized Vt3.1 formed dimers with different intermolecular disulfide linkages. Only the dimer with crossed disulfides showed bioactivity when injected into the intraventricular region of mice brains. Therefore, Vt3.1 and Vt3.2 represent a new group of conopeptides that form disulfide-crosslinked dimers in vitro and probably in vivo.
Collapse
Affiliation(s)
- Xue-Chen Wu
- Institute of Protein Research, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | | | | | | | | | | |
Collapse
|