1
|
Fuloria S, Subramaniyan V, Gupta G, Sekar M, Meenakshi DU, Sathasivam K, Sudhakar K, Alharbi KS, Almutairi SS, Almalki WH, Fuloria NK. Detection of Circulating Tumor Cells and Epithelial Progenitor Cells: A Comprehensive Study. J Environ Pathol Toxicol Oncol 2023; 42:1-29. [PMID: 37017676 DOI: 10.1615/jenvironpatholtoxicoloncol.2022044456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Technological advancement to enhance tumor cells (TC) has allowed discovery of various cellular bio-markers: cancer stem cells (CSC), circulating tumor cells (CTC), and endothelial progenitor cells (EPC). These are responsible for resistance, metastasis, and premetastatic conditions of cancer. Detection of CSC, CTC, and EPC assists in early diagnosis, recurrence prediction, and treatment efficacy. This review describes various methods to detect TC subpopulations such as in vivo assays (sphere-forming, serial dilution, and serial transplantation), in vitro assays (colony-forming cells, microsphere, side-population, surface antigen staining, aldehyde dehydrogenase activity, and Paul Karl Horan label-retaining cells, surface markers, nonenriched and enriched detection), reporter systems, and other analytical methods (flow cytometry, fluorescence microscopy/spectroscopy, etc.). The detailed information on methods to detect CSC, CTC, and EPC in this review will assist investigators in successful prognosis, diagnosis, and cancer treatment with greater ease.
Collapse
Affiliation(s)
- Shivkanya Fuloria
- Faculty of Pharmacy /Centre of Excellence for Biomaterials Engineering, AIMST University, Kedah 08100, Malaysia
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Bandar Saujana Putra, 42610 Jenjarom Selangor, Malaysia
| | - Gaurav Gupta
- Department of Pharmacology, Suresh GyanVihar University, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Perak, Malaysia
| | | | | | - Kalvatala Sudhakar
- School of Pharmaceutical Sciences (LIT-Pharmacy), Lovely Professional University, Jalandhar 144411, India
| | - Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | | | - Waleed Hassan Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Neeraj Kumar Fuloria
- Faculty of Pharmacy/Centre of Excellence for Biomaterials Engineering, AIMST University, Kedah 08100, Malaysia
| |
Collapse
|
2
|
Zhou X, Torres VE. Emerging therapies for autosomal dominant polycystic kidney disease with a focus on cAMP signaling. Front Mol Biosci 2022; 9:981963. [PMID: 36120538 PMCID: PMC9478168 DOI: 10.3389/fmolb.2022.981963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), with an estimated genetic prevalence between 1:400 and 1:1,000 individuals, is the third most common cause of end stage kidney disease after diabetes mellitus and hypertension. Over the last 3 decades there has been great progress in understanding its pathogenesis. This allows the stratification of therapeutic targets into four levels, gene mutation and polycystin disruption, proximal mechanisms directly caused by disruption of polycystin function, downstream regulatory and signaling pathways, and non-specific pathophysiologic processes shared by many other diseases. Dysfunction of the polycystins, encoded by the PKD genes, is closely associated with disruption of calcium and upregulation of cyclic AMP and protein kinase A (PKA) signaling, affecting most downstream regulatory, signaling, and pathophysiologic pathways altered in this disease. Interventions acting on G protein coupled receptors to inhibit of 3',5'-cyclic adenosine monophosphate (cAMP) production have been effective in preclinical trials and have led to the first approved treatment for ADPKD. However, completely blocking cAMP mediated PKA activation is not feasible and PKA activation independently from cAMP can also occur in ADPKD. Therefore, targeting the cAMP/PKA/CREB pathway beyond cAMP production makes sense. Redundancy of mechanisms, numerous positive and negative feedback loops, and possibly counteracting effects may limit the effectiveness of targeting downstream pathways. Nevertheless, interventions targeting important regulatory, signaling and pathophysiologic pathways downstream from cAMP/PKA activation may provide additive or synergistic value and build on a strategy that has already had success. The purpose of this manuscript is to review the role of cAMP and PKA signaling and their multiple downstream pathways as potential targets for emergent therapies for ADPKD.
Collapse
Affiliation(s)
- Xia Zhou
- Mayo Clinic, Department of Nephrology, Rochester, MN, United States
| | | |
Collapse
|
3
|
Wang X, Jiang L, Thao K, Sussman C, LaBranche T, Palmer M, Harris P, McKnight GS, Hoeflich K, Schalm S, Torres V. Protein Kinase A Downregulation Delays the Development and Progression of Polycystic Kidney Disease. J Am Soc Nephrol 2022; 33:1087-1104. [PMID: 35236775 PMCID: PMC9161799 DOI: 10.1681/asn.2021081125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/14/2022] [Indexed: 11/03/2022] Open
Abstract
Background: Upregulation of cAMP-dependent and -independent PKA signaling is thought to promote cystogenesis in polycystic kidney disease (PKD). PKA-I regulatory subunit RIα is increased in kidneys of orthologous mouse models. Kidney-specific knockout of RIα upregulates PKA activity, induces cystic disease in wild-type mice, and aggravates it in Pkd1 RC/RC mice. Methods: PKA-I activation or inhibition was compared to EPAC activation or PKA-II inhibition using Pkd1 RC/RC metanephric organ cultures. The effect of constitutive PKA (preferentially PKA-I) downregulation in vivo was ascertained by kidney-specific expression of a dominant negative RIαB allele in Pkd1 RC/RC mice obtained by crossing Prkar1α R1αB/WT, Pkd1 RC/RC, and Pkhd1-Cre mice (C57BL/6 background). The effect of pharmacologic PKA inhibition using a novel, selective PRKACA inhibitor (BLU2864) was tested in mIMCD3 3D cultures, metanephric organ cultures, and Pkd1 RC/RC mice on a C57BL/6 x 129S6/Sv F1 background. Mice were sacrificed at 16 weeks of age. Results: PKA-I activation promoted and inhibition prevented ex vivo P-Ser133 CREB expression and cystogenesis. EPAC activation or PKA-II inhibition had no or only minor effects. BLU2864 inhibited in vitro mIMCD3 cystogenesis and ex vivo P-Ser133 CREB expression and cystogenesis. Genetic downregulation of PKA activity and BLU2864 directly and/or indirectly inhibited many pro-proliferative pathways and were both protective in vivo BLU2864 had no detectable on- or off-target adverse effects. Conclusions: PKA-I is the main PKA isozyme promoting cystogenesis. Direct PKA inhibition may be an effective strategy to treat PKD and other conditions where PKA signaling is upregulated. By acting directly on PKA, the inhibition may be more effective than or substantially increase the efficacy of treatments that only affect PKA activity by lowering cAMP.
Collapse
Affiliation(s)
- Xiaofang Wang
- X Wang, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, United States
| | - Li Jiang
- L Jiang, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, United States
| | - Ka Thao
- K Thao, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, United States
| | - Caroline Sussman
- C Sussman, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, United States
| | | | | | - Peter Harris
- P Harris, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, United States
| | - G Stanley McKnight
- G McKnight, Department of Pharmacology, University of Washington, Seattle, United States
| | - Klaus Hoeflich
- K Hoeflich, Blueprint Medicines, Cambridge, United States
| | | | - Vicente Torres
- V Torres, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, United States
| |
Collapse
|
4
|
Long JY, Wang XJ, Li XY, Kong XH, Yang G, Zhang D, Yang YT, Shi Z, Ma XP. Spinal Microglia and Astrocytes: Two Key Players in Chronic Visceral Pain Pathogenesis. Neurochem Res 2022; 47:545-551. [PMID: 34797501 DOI: 10.1007/s11064-021-03486-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
Chronic visceral pain (CVP) is one of the common symptoms of many diseases triggered by underlying diseases of the internal organs of the human body. Its causes include vascular mechanisms, mechanical factors, persistent inflammation, and unexplained functional mechanisms. Although the pathogenesis is unclear, more and more research has begun to shift from the neuronal aspect to the glial cells in recent years. Some data highlight that the spinal glial cells, particularly the microglia and astrocytes, play an essential role in CVP. Based on this, we highlight the mechanisms of microglia and astrocytes in CVP concerning the release of cytokines, chemokines, and neuroactive substances and alterations in intracellular signaling pathways during the process. Finally, because CVP is widespread in various diseases, we present future perspectives targeting microglia and astrocytes for treatment.
Collapse
Affiliation(s)
- Jun-Yi Long
- Shanghai Research Institute of Acupuncture and Meridian, No.650 South Wanping Road, Xuhui District, Shanghai, 200030, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China
| | - Xue-Jun Wang
- Shanghai Research Institute of Acupuncture and Meridian, No.650 South Wanping Road, Xuhui District, Shanghai, 200030, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China
| | - Xiao-Ying Li
- Shanghai Research Institute of Acupuncture and Meridian, No.650 South Wanping Road, Xuhui District, Shanghai, 200030, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China
| | - Xie-He Kong
- Shanghai Research Institute of Acupuncture and Meridian, No.650 South Wanping Road, Xuhui District, Shanghai, 200030, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China
| | - Guang Yang
- Shanghai Research Institute of Acupuncture and Meridian, No.650 South Wanping Road, Xuhui District, Shanghai, 200030, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China
| | - Dan Zhang
- Shanghai Research Institute of Acupuncture and Meridian, No.650 South Wanping Road, Xuhui District, Shanghai, 200030, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China
| | - Yan-Ting Yang
- Shanghai Research Institute of Acupuncture and Meridian, No.650 South Wanping Road, Xuhui District, Shanghai, 200030, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China
| | - Zheng Shi
- Shanghai Research Institute of Acupuncture and Meridian, No.650 South Wanping Road, Xuhui District, Shanghai, 200030, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China
| | - Xiao-Peng Ma
- Shanghai Research Institute of Acupuncture and Meridian, No.650 South Wanping Road, Xuhui District, Shanghai, 200030, China.
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China.
| |
Collapse
|
5
|
Liu E, Sun H, Wu J, Kuang Y. MiR-92b-3p regulates oxygen and glucose deprivation-reperfusion-mediated apoptosis and inflammation by targeting TRAF3 in PC12 cells. Exp Physiol 2020; 105:1792-1801. [PMID: 32818322 DOI: 10.1113/ep088708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
NEW FINDINGS What is the central question of this study? MiR-92b-3p was found to be reduced in a rat model of middle cerebral artery occlusion: what are the functions of miR-92b-3p in oxygen and glucose deprivation-reperfusion (OGD/R)? What is the main finding and its importance? MiR-92b-3p abated apoptosis, mitochondrial dysfunction and inflammation caused by OGD/R via targeting TRAF3, suggesting that miR-92b-3p may serve as a potential therapeutic target in ischaemic stroke treatment. ABSTRACT Stroke is the most common cause of human neurological disability. MiR-92b-3p has been shown to be decreased in a rat model of middle cerebral artery occlusion, but its effects in cerebral ischaemic insult are unknown. In this study, PC12 cells were exposed to oxygen and glucose deprivation-reperfusion (OGD/R) to establish cerebral ischaemic injury in vitro. Quantitative real time-PCR analysis demonstrated that OGD/R exposure led to down-regulation of miR-92b-3p and increased mRNA and protein levels of tumour necrosis factor receptor-associated factor 3 (TRAF3). Gain of miR-92b-3p expression facilitated cell survival; attenuated lactate dehydrogenase leakage, cell apoptosis, caspase 3 activity and cleaved-caspase 3 (c-caspase 3) expression; and decreased the Bax/Bcl-2 ratio. Furthermore, miR-92b-3p repressed mitochondrial membrane potential depolarization, reactive oxygen species production, cytochrome c protein expression, inflammatory cytokine production and the reduction of ATP content. MiR-92b-3p directly targeted the 3'-untranslated region of TRAF3 and decreased TRAF3 expression. Reinforced expression of TRAF3 partly abrogated the biological activity of miR-92b-3p during OGD/R. Hence, miR-92b-3p abated apoptosis, mitochondrial dysfunction and inflammatory responses induced by OGD/R by targeting TRAF3.
Collapse
Affiliation(s)
- Enyu Liu
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
| | - Haodong Sun
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
| | - Jianping Wu
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
| | - Yongqin Kuang
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
6
|
Sussman CR, Wang X, Chebib FT, Torres VE. Modulation of polycystic kidney disease by G-protein coupled receptors and cyclic AMP signaling. Cell Signal 2020; 72:109649. [PMID: 32335259 DOI: 10.1016/j.cellsig.2020.109649] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a systemic disorder associated with polycystic liver disease (PLD) and other extrarenal manifestations, the most common monogenic cause of end-stage kidney disease, and a major burden for public health. Many studies have shown that alterations in G-protein and cAMP signaling play a central role in its pathogenesis. As for many other diseases (35% of all approved drugs target G-protein coupled receptors (GPCRs) or proteins functioning upstream or downstream from GPCRs), treatments targeting GPCR have shown effectiveness in slowing the rate of progression of ADPKD. Tolvaptan, a vasopressin V2 receptor antagonist is the first drug approved by regulatory agencies to treat rapidly progressive ADPKD. Long-acting somatostatin analogs have also been effective in slowing the rates of growth of polycystic kidneys and liver. Although no treatment has so far been able to prevent the development or stop the progression of the disease, these encouraging advances point to G-protein and cAMP signaling as a promising avenue of investigation that may lead to more effective and safe treatments. This will require a better understanding of the relevant GPCRs, G-proteins, cAMP effectors, and of the enzymes and A-kinase anchoring proteins controlling the compartmentalization of cAMP signaling. The purpose of this review is to provide an overview of general GPCR signaling; the function of polycystin-1 (PC1) as a putative atypical adhesion GPCR (aGPCR); the roles of PC1, polycystin-2 (PC2) and the PC1-PC2 complex in the regulation of calcium and cAMP signaling; the cross-talk of calcium and cAMP signaling in PKD; and GPCRs, adenylyl cyclases, cyclic nucleotide phosphodiesterases, and protein kinase A as therapeutic targets in ADPKD.
Collapse
Affiliation(s)
- Caroline R Sussman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America
| | - Xiaofang Wang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America
| | - Fouad T Chebib
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
7
|
Zhou Y, Zhou Y, Kang X, Meng C, Zhang R, Guo Y, Xiong D, Song L, Jiao X, Pan Z. Molecular cloning and functional characterisation of duck ( Anas platyrhynchos) tumour necrosis factor receptor-associated factor 3. Br Poult Sci 2019; 60:357-365. [PMID: 31046421 DOI: 10.1080/00071668.2019.1614528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
1. Tumour necrosis factor receptor-associated factor 3 (TRAF3) is a key regulator of innate immunity and acquired immunity, and has a salient anti-viral role. 2. In this experiment, the duck TRAF3 (DuTRAF3) gene was cloned according to the Anas platyrhynchos TRAF3 sequence to explore its function. The TRAF3 open reading frame contains 1704 bp that encode a protein of 567 amino acids, which contain a RING finger domain, two zinc finger motifs, a coiled-coil region, and a MATH domain. 3. Reverse transcription-polymerase chain reaction showed that DuTRAF3 was expressed in all the examined tissues, with a comparatively higher expression in the spleen and brain tissues. 4. In HEK293T cells, DuTRAF3 overexpression resulted in a significantly increased NF-κB activity and interferon (IFN)-β promoter activation. 5. Following resiquimod (R848) and poly(I:C) stimulation of duck peripheral blood mononuclear cells (PBMCs), the expressions of TRAF3 and IFN-β were significantly upregulated; in addition, following R848 stimulation, the mRNA levels of IL-6, IL-8 and IL-10 were also significantly upregulated. After infection with the Newcastle Disease Virus LaSota vaccine strain, the mRNA levels of IL-6 and IL-10 were significantly upregulated, while that of TRAF3 was downregulated. 6. These results suggest that DuTRAF3 has an important role to play in innate antiviral immune responses.
Collapse
Affiliation(s)
- Y Zhou
- a Jiangsu Key Laboratory of Zoonosis , Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , Jiangsu , China.,c Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs , Yangzhou University , Yangzhou , Jiangsu , China.,d Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education , Yangzhou University , Yangzhou , Jiangsu , China
| | - Y Zhou
- a Jiangsu Key Laboratory of Zoonosis , Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , Jiangsu , China.,c Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs , Yangzhou University , Yangzhou , Jiangsu , China.,d Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education , Yangzhou University , Yangzhou , Jiangsu , China
| | - X Kang
- a Jiangsu Key Laboratory of Zoonosis , Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , Jiangsu , China.,c Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs , Yangzhou University , Yangzhou , Jiangsu , China.,d Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education , Yangzhou University , Yangzhou , Jiangsu , China
| | - C Meng
- a Jiangsu Key Laboratory of Zoonosis , Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , Jiangsu , China.,c Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs , Yangzhou University , Yangzhou , Jiangsu , China.,d Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education , Yangzhou University , Yangzhou , Jiangsu , China
| | - R Zhang
- a Jiangsu Key Laboratory of Zoonosis , Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , Jiangsu , China.,c Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs , Yangzhou University , Yangzhou , Jiangsu , China.,d Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education , Yangzhou University , Yangzhou , Jiangsu , China
| | - Y Guo
- a Jiangsu Key Laboratory of Zoonosis , Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , Jiangsu , China.,c Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs , Yangzhou University , Yangzhou , Jiangsu , China.,d Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education , Yangzhou University , Yangzhou , Jiangsu , China
| | - D Xiong
- a Jiangsu Key Laboratory of Zoonosis , Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , Jiangsu , China.,c Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs , Yangzhou University , Yangzhou , Jiangsu , China.,d Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education , Yangzhou University , Yangzhou , Jiangsu , China
| | - L Song
- a Jiangsu Key Laboratory of Zoonosis , Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , Jiangsu , China.,c Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs , Yangzhou University , Yangzhou , Jiangsu , China.,d Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education , Yangzhou University , Yangzhou , Jiangsu , China
| | - X Jiao
- a Jiangsu Key Laboratory of Zoonosis , Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , Jiangsu , China.,c Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs , Yangzhou University , Yangzhou , Jiangsu , China.,d Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education , Yangzhou University , Yangzhou , Jiangsu , China
| | - Z Pan
- a Jiangsu Key Laboratory of Zoonosis , Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , Jiangsu , China.,c Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs , Yangzhou University , Yangzhou , Jiangsu , China.,d Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education , Yangzhou University , Yangzhou , Jiangsu , China
| |
Collapse
|