1
|
Tjahjono E, Daneman MR, Meika B, Revtovich AV, Kirienko NV. Mitochondrial abnormalities as a target of intervention in acute myeloid leukemia. Front Oncol 2025; 14:1532857. [PMID: 39902131 PMCID: PMC11788353 DOI: 10.3389/fonc.2024.1532857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 12/27/2024] [Indexed: 02/05/2025] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy; it is the most common acute leukemia in adults. AML prognosis is often poor, and relapse often occurs after initial remission. Recurrent genetic abnormalities underlying this disease and the presence of leukemic stem cells complicate disease treatment. However, the complex metabolic reprogramming that enables the unrestrained cell growth seen in these cells may also be their Achilles' heel. In these cells, mitophagy operates as a double-edged sword. On one hand, it provides a source of building blocks for further cell division and serves as a method for removing damaged organelles, promoting cell survival. However, the profound metabolic changes to mitochondria also render these organelles more sensitive to damage and place them precariously close to excess mitophagic activation. This review discusses the dual role mitophagy plays in AML survival, the importance of targeting mitophagy to treat AML, and current progress in the area. The discovery and mechanism of action of multiple compounds that were used to inhibit or stimulate mitophagy and their effects on AML survival are also described. Further, we explore the combination strategy of mitophagy-targeting compounds with existing and/or novel chemotherapeutics to eradicate AML and discuss strategies to uncover new drug targets and novel mitochondria-targeting drugs.
Collapse
|
2
|
Moomivand S, Nikbakht M, Majd A, Bikhof Torbati M, Mousavi SA. Combining Chemotherapy Agents and Autophagy Modulators for Enhanced Breast Cancer Cell Death. Adv Pharm Bull 2024; 14:908-917. [PMID: 40190668 PMCID: PMC11970493 DOI: 10.34172/apb.42733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 04/09/2025] Open
Abstract
Purpose Autophagy, governed by genes with dual roles in cell death and survival, plays a crucial role in cancer persistence. Arsenic trioxide (ATO), carboplatin (CP), and cyclophosphamide (CY) are used to treat various cancers. ATO impedes cell proliferation and triggers apoptosis in cancer cells. CP, a platinum-based drug, damages cancer cell DNA, while CY acts as an alkylating agent, disrupting cell proliferation. This study investigates the combined effects of ATO, CP, and CY on inducing apoptosis and modulating autophagy in triple-negative breast cancer (TNBC) cell lines, BT-20 and MDA-MB-231. Methods The cytotoxic effects of ATO, CP, and CY, alone and in combination, were evaluated using the MTT assay on BT-20 and MDA-MB-231 cells. Apoptosis and cell cycle progression were analyzed by annexin-V FITC/PI staining and flow cytometry. Gene expression of autophagy-and apoptosis-related markers, including Beclin 1, LC3, caspase 3, and BCL2, was quantified using RT-PCR. Data were analyzed using GraphPad Prism 4.0 with one-way ANOVA followed by Dunnett's test. Results The combination of ATO, CP, and CY significantly reduced cell viability and enhanced apoptosis, evidenced by increased caspase-3 activity and reduced BCL2 expression. Cell cycle arrest in the G1 phase was observed, alongside elevated autophagy markers Beclin 1 and LC3. Conclusion The combination of ATO, CP, and CY induces synergistic effects in promoting apoptosis and autophagy in TNBC cell lines. These findings suggest that this combination therapy could be a promising approach to enhancing treatment efficacy in aggressive breast cancers, offering new insights into potential therapeutic strategies.
Collapse
Affiliation(s)
- Soraya Moomivand
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
- Research Institute for Oncology, Hematology and Cell Therapy Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Nikbakht
- Research Institute for Oncology, Hematology and Cell Therapy Tehran University of Medical Sciences, Tehran, Iran
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran, Iran
| | - Ahmad Majd
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Bikhof Torbati
- Department of Biology, Yadegar-e-Imam Khomeini (RAH) Shahre rey branch, Islamic Azad University, Tehran, Iran
| | - Seyed Asadoullah Mousavi
- Research Institute for Oncology, Hematology and Cell Therapy Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Costa AR, Santos AMO, Barreto FS, Costa PMS, Roma RR, Rocha BAM, Oliveira CVB, Duarte AE, Pessoa C, Teixeira CS. In vitro antiproliferative effects of Vatairea macrocarpa (Benth.) Ducke lectin on human tumor cell lines and in vivo evaluation of its toxicity in Drosophila melanogaster. Food Chem Toxicol 2024; 190:114815. [PMID: 38876381 DOI: 10.1016/j.fct.2024.114815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Tumor cells may develop alterations in glycosylation patterns during the initial phase of carcinogenesis. These alterations may be important therapeutic targets for lectins with antitumor action. This work aimed to evaluate the in vitro cytotoxicity of VML on tumor and non-tumor cells (concentration of 25 μg/mL and then microdiluted) and evaluate its in vivo toxicity at different concentrations (1.8, 3.5 and 7.0 μg/mL), using Drosophila melanogaster. Toxicity in D. melanogaster evaluated mortality rate, as well as oxidative stress markers (TBARS, iron levels, nitric oxide levels, protein and non-protein thiols). The cytotoxicity assay showed that VML had cytotoxic effect on leukemic lines HL-60 (IC50 = 3.5 μg/mL), KG1 (IC50 = 18.6 μg/mL) and K562 (102.0 μg/mL). In the toxicity assay, VML showed no reduction in survival at concentrations of 3.5 and 7.0 μg/mL and did not alter oxidative stress markers at any concentrations tested. Cytotoxicity of VML from HL-60, KG1 and K562 cells could arise from the interaction between the lectin and specific carbohydrates of tumor cells. In contrast, effective concentrations of VML against no-tumor cells human keratinocyte - HaCat and in the D. melanogaster model did not show toxicity, suggesting that VML is a promising molecule in vivo studies involving leukemic cells.
Collapse
Affiliation(s)
- Adrielle R Costa
- Center for Agricultural Sciences and Biodiversity, Universidade Federal do Cariri, Crato, CE, Brazil
| | - Antonio M O Santos
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Francisco S Barreto
- Department of Physiology and Pharmacology, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Pedro M S Costa
- Department of Physiology and Pharmacology, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Renato R Roma
- Department of Biochemistry and Molecular Biology, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Bruno A M Rocha
- Department of Biochemistry and Molecular Biology, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Carlos V B Oliveira
- Department of Biological Sciences, Universidade Regional do Cariri, Crato, CE, Brazil
| | - Antonia E Duarte
- Department of Biological Sciences, Universidade Regional do Cariri, Crato, CE, Brazil
| | - Claudia Pessoa
- Department of Physiology and Pharmacology, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Claudener S Teixeira
- Center for Agricultural Sciences and Biodiversity, Universidade Federal do Cariri, Crato, CE, Brazil.
| |
Collapse
|
4
|
Qiu Z, He S, Lu B, Sun Y, Zhang T, Lv W, Shen D. The E3 ubiquitin ligase RNF135 modulates chemotherapy resistance to oxaliplatin for colorectal cancer by modulating autophagy. Tissue Cell 2024; 86:102282. [PMID: 38056362 DOI: 10.1016/j.tice.2023.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND RING finger protein 135 plays an important role in tumorigenesis and is associated with drug resistance. METHODS Bioinformatics analysis showed that RNF135 was significantly differentially expressed in colorectal cancer. RT-qPCR and western blot were used to detect the expression of RNF135. Immunohistochemical analysis were used to measure the expression of RNF135 and Ki-67. RESULTS The expression of RNF135 was up-regulated in human tissue samples and colorectal cancer and was positively correlated with Ki-67. Compared with oxaliplatin sensitive patients, RNF135 expression levels were higher in the tissue of resistant patients. The regulatory effect of RNF135 on colorectal cancer cells was further investigated in vitro. Therefore, inhibition of autophagy by down-regulating RNF135 can partially increase its susceptibility to oxaliplatin.
Collapse
Affiliation(s)
- Zhen Qiu
- Department of Pathology, Hongze People's Hospital, 102 Dongfeng Road, Hongze 223100, China
| | - Shuyan He
- Department of Tumor Center, Affiliated Jiangyin Clinical College of Xuzhou Medical University, 163 Shoushan Road, Jiangyin 214400, China
| | - Boyi Lu
- Department of Tumor Center, Affiliated Jiangyin Clinical College of Xuzhou Medical University, 163 Shoushan Road, Jiangyin 214400, China
| | - Yuejun Sun
- Department of Pathology, Affiliated Jiangyin Clinical College of Xuzhou Medical University, 163 Shoushan Road, Jiangyin 214400, China
| | - Ting Zhang
- Department of Central Laboratory, Affiliated Jiangyin Clinical College of Xuzhou Medical University, 163 Shoushan Road, Jiangyin 214400, China
| | - Wei Lv
- Department of Pharmacy, Jiangyin Hospital Affiliated to Nantong University, 163 Shoushan Road, Jiangyin 214400, China.
| | - Dong Shen
- Department of Tumor Center, Affiliated Jiangyin Clinical College of Xuzhou Medical University, 163 Shoushan Road, Jiangyin 214400, China.
| |
Collapse
|
5
|
Chen Y, Chen J, Zou Z, Xu L, Li J. Crosstalk between autophagy and metabolism: implications for cell survival in acute myeloid leukemia. Cell Death Discov 2024; 10:46. [PMID: 38267416 PMCID: PMC10808206 DOI: 10.1038/s41420-024-01823-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024] Open
Abstract
Acute myeloid leukemia (AML), a prevalent form of leukemia in adults, is often characterized by low response rates to chemotherapy, high recurrence rates, and unfavorable prognosis. A critical barrier in managing refractory or recurrent AML is the resistance to chemotherapy. Increasing evidence indicates that tumor cell metabolism plays a crucial role in AML progression, survival, metastasis, and treatment resistance. Autophagy, an essential regulator of cellular energy metabolism, is increasingly recognized for its role in the metabolic reprogramming of AML. Autophagy sustains leukemia cells during chemotherapy by not only providing energy but also facilitating rapid proliferation through the supply of essential components such as amino acids and nucleotides. Conversely, the metabolic state of AML cells can influence the activity of autophagy. Their mutual coordination helps maintain intrinsic cellular homeostasis, which is a significant contributor to chemotherapy resistance in leukemia cells. This review explores the recent advancements in understanding the interaction between autophagy and metabolism in AML cells, emphasizing their roles in cell survival and drug resistance. A comprehensive understanding of the interplay between autophagy and leukemia cell metabolism can shed light on leukemia cell survival strategies, particularly under adverse conditions such as chemotherapy. This insight may also pave the way for innovative targeted treatment strategies.
Collapse
Affiliation(s)
- Yongfeng Chen
- Department of Basic Medical Sciences, Medical College of Taizhou University, 318000, Taizhou, Zhejiang, China.
| | - Jia Chen
- School of Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Zhenyou Zou
- Brain Hospital of Guangxi Zhuang Autonomous Region, 542005, Liuzhou, Guangxi, China.
| | - Linglong Xu
- Department of Hematology, Taizhou Central Hospital (Taizhou University Hospital), 318000, Taizhou, Zhejiang, China
| | - Jing Li
- Department of Histology and Embryology, North Sichuan Medical College, 637000, Nanchong, Sichuan, China
| |
Collapse
|
6
|
Saulle E, Spinello I, Quaranta MT, Labbaye C. Advances in Understanding the Links between Metabolism and Autophagy in Acute Myeloid Leukemia: From Biology to Therapeutic Targeting. Cells 2023; 12:1553. [PMID: 37296673 PMCID: PMC10252746 DOI: 10.3390/cells12111553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Autophagy is a highly conserved cellular degradation process that regulates cellular metabolism and homeostasis under normal and pathophysiological conditions. Autophagy and metabolism are linked in the hematopoietic system, playing a fundamental role in the self-renewal, survival, and differentiation of hematopoietic stem and progenitor cells, and in cell death, particularly affecting the cellular fate of the hematopoietic stem cell pool. In leukemia, autophagy sustains leukemic cell growth, contributes to survival of leukemic stem cells and chemotherapy resistance. The high frequency of disease relapse caused by relapse-initiating leukemic cells resistant to therapy occurs in acute myeloid leukemia (AML), and depends on the AML subtypes and treatments used. Targeting autophagy may represent a promising strategy to overcome therapeutic resistance in AML, for which prognosis remains poor. In this review, we illustrate the role of autophagy and the impact of its deregulation on the metabolism of normal and leukemic hematopoietic cells. We report updates on the contribution of autophagy to AML development and relapse, and the latest evidence indicating autophagy-related genes as potential prognostic predictors and drivers of AML. We review the recent advances in autophagy manipulation, combined with various anti-leukemia therapies, for an effective autophagy-targeted therapy for AML.
Collapse
Affiliation(s)
- Ernestina Saulle
- Correspondence: (E.S.); (C.L.); Tel.: +39-0649902422 (E.S.); +39-0649902418 (C.L.)
| | | | | | - Catherine Labbaye
- Correspondence: (E.S.); (C.L.); Tel.: +39-0649902422 (E.S.); +39-0649902418 (C.L.)
| |
Collapse
|
7
|
Seo W, Silwal P, Song IC, Jo EK. The dual role of autophagy in acute myeloid leukemia. J Hematol Oncol 2022; 15:51. [PMID: 35526025 PMCID: PMC9077970 DOI: 10.1186/s13045-022-01262-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/14/2022] [Indexed: 01/18/2023] Open
Abstract
Acute myeloid leukemia (AML) is a severe hematologic malignancy prevalent in older patients, and the identification of potential therapeutic targets for AML is problematic. Autophagy is a lysosome-dependent catabolic pathway involved in the tumorigenesis and/or treatment of various cancers. Mounting evidence has suggested that autophagy plays a critical role in the initiation and progression of AML and anticancer responses. In this review, we describe recent updates on the multifaceted functions of autophagy linking to genetic alterations of AML. We also summarize the latest evidence for autophagy-related genes as potential prognostic predictors and drivers of AML tumorigenesis. We then discuss the crosstalk between autophagy and tumor cell metabolism into the impact on both AML progression and anti-leukemic treatment. Moreover, a series of autophagy regulators, i.e., the inhibitors and activators, are described as potential therapeutics for AML. Finally, we describe the translation of autophagy-modulating therapeutics into clinical practice. Autophagy in AML is a double-edged sword, necessitating a deeper understanding of how autophagy influences dual functions in AML tumorigenesis and anti-leukemic responses.
Collapse
Affiliation(s)
- Wonhyoung Seo
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Korea.,Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Korea.,Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Prashanta Silwal
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Korea.,Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Ik-Chan Song
- Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Eun-Kyeong Jo
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Korea. .,Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Korea. .,Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Korea.
| |
Collapse
|
8
|
Augello G, Emma MR, Azzolina A, Puleio R, Condorelli L, Cusimano A, Giannitrapani L, McCubrey JA, Iovanna JL, Cervello M. The NUPR1/p73 axis contributes to sorafenib resistance in hepatocellular carcinoma. Cancer Lett 2021; 519:250-262. [PMID: 34314755 DOI: 10.1016/j.canlet.2021.07.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/24/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023]
Abstract
The multikinase inhibitor sorafenib was the first drug approved by the FDA for treating patients with advanced hepatocellular carcinoma (HCC). However, sorafenib resistance remains a major challenge for improving the effectiveness of HCC treatment. Previously, we identified several genes modulated after sorafenib treatment of human HCC cells, including the stress-inducible nuclear protein 1 (NUPR1) gene. Multiple studies have shown that NUPR1 regulates autophagy, apoptosis, and chemoresistance. Here, we demonstrate that treatment of HCC cells with sorafenib resulted in the activation of autophagic flux. NUPR1 knock-down (KD) in HCC cells was associated with increased p62 expression, suggesting an impairment of autophagic flux, and with a significant increase of cell sensitivity to sorafenib. In NUPR1 KD cells, reduced levels of NUPR1 were associated with the increased expression of p73 as well as its downstream transcription targets PUMA, NOXA, and p21. Simultaneous silencing of p73 and NUPR1 in HCC cells resulted in increased resistance to sorafenib, as compared to the single KD of either gene. Conversely, pharmacological activation of p73, via the novel p73 small molecule activator NSC59984, determined synergistic anti-tumor effects in sorafenib-treated HCC cells. The combination of NSC59984 and sorafenib, when compared to either treatment alone, synergistically suppressed tumor growth of HCC cells in vivo. Our data suggest that the activation of the p73 pathway achieved by NUPR1 KD potentiates sorafenib-induced anti-tumor effects in HCC cells. Moreover, combined pharmacological therapy with the p73 activator NSC59984 and sorafenib could represent a novel approach for HCC treatment.
Collapse
Affiliation(s)
- Giuseppa Augello
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Maria Rita Emma
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Antonina Azzolina
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Roberto Puleio
- Istituto Zooprofilattico Sperimentale Della Sicilia "A. Mirri", Palermo, Italy
| | - Lucia Condorelli
- Istituto Zooprofilattico Sperimentale Della Sicilia "A. Mirri", Palermo, Italy
| | - Antonella Cusimano
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Lydia Giannitrapani
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy; Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA
| | - Juan Lucio Iovanna
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy.
| |
Collapse
|
9
|
Guo W, Zhang X, Lin L, Wang H, He E, Wang G, Zhao Q. The disulfiram/copper complex induces apoptosis and inhibits tumor growth in human osteosarcoma by activating the ROS/JNK signaling pathway. J Biochem 2021; 170:275-287. [PMID: 33792698 DOI: 10.1093/jb/mvab045] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/22/2021] [Indexed: 12/21/2022] Open
Abstract
Given the huge cost, long research and development (R&D) time and uncertain side effects of discovering new drugs, drug repositioning of those approved to treat diseases clinically as new drugs for other pathological conditions, especially cancers, is a potential alternative strategy. Disulfiram (DSF), an old drug used to treat alcoholism, has been found to exhibit anticancer activity and improve chemotherapeutic efficacy in cancers by an increasing number of studies. In addition, the combination of DSF and copper may be a more effective therapeutic strategy. In this study, we report the toxicity of the DSF/Cu complex to human osteosarcoma both in vitro and in vivo. DSF/Cu significantly inhibited the proliferation and clonogenicity of osteosarcoma cell lines. Furthermore, the generation of ROS was triggered by DSF/Cu, and cell arrest, autophagy and apoptosis were induced in a ROS-dependent manner. The underlying mechanism of this process was explored, and DSF/Cu may mainly inhibit osteosarcoma by inducing apoptosis by activating the ROS/JNK pathway. DSF/Cu also inhibited osteosarcoma growth in a xenograft model with low levels of organ-related toxicities. These results suggest that the DSF/Cu complex could be an efficient and safe option for the treatment of osteosarcoma in the clinic.
Collapse
Affiliation(s)
- Weihong Guo
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Xiaoxing Zhang
- Department of Orthopedic Surgery, Chongqing University Central Hospital, Chongqing, 400000, China
| | - Longshuai Lin
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Hongjie Wang
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Enjun He
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Gangyang Wang
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Qinghua Zhao
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| |
Collapse
|
10
|
Issue Highlights. IUBMB Life 2020. [DOI: 10.1002/iub.2441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|