1
|
Garcia-Sanchez JA, Bonnet E, Loubatier C, Doye A, Paillier G, Segui F, Larbret F, Chaintreuil P, Batistic L, Torre C, Deckert M, Polanowska J, Munro P, Boyer L, Visvikis O. Evolutionary conserved regulation of TFEB stability by the E3 ubiquitin ligase WWP2 modulates response to stress in vivo. iScience 2025; 28:111838. [PMID: 39995862 PMCID: PMC11848471 DOI: 10.1016/j.isci.2025.111838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/22/2024] [Accepted: 01/15/2025] [Indexed: 02/26/2025] Open
Abstract
Transcription factor EB (TFEB) is a key transcription factor that orchestrates the cellular response to stress. Dysregulation of TFEB is associated with a range of human diseases, and understanding the regulatory mechanisms of TFEB is crucial for identifying potential drug targets. In this study, we used Caenorhabditis elegans to screen for E3 ubiquitin ligases regulating the activity of TFEB's homolog, HLH-30, upon pathogenic infection. We identified WWP-1 as a regulator of HLH-30-dependent immune response controlling HLH-30 stability to mediate host defense in vivo. We found that HLH-30 interacts with WWP-1, supporting a model of WWP-1 directly regulating HLH-30. Furthermore, we found that WWP-1's human homolog WWP2 binds TFEB, directly induces TFEB ubiquitination and stabilizes TFEB. Finally, we found that WWP2 is required for TFEB-dependent host response in human monocytes-derived macrophages upon infection. Overall, our work has identified an evolutionarily conserved regulation of TFEB by WWP2 and highlighted its role in modulating stress response.
Collapse
Affiliation(s)
| | - Estelle Bonnet
- Université Côte d’Azur, INSERM, C3M, Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur, Centre Scientifique de Monaco, Monaco, Monaco
| | | | - Anne Doye
- Université Côte d’Azur, INSERM, C3M, Nice, France
| | | | - Fabien Segui
- Université Côte d’Azur, INSERM, C3M, Nice, France
| | | | | | | | - Cédric Torre
- Université Côte d’Azur, INSERM, C3M, Nice, France
| | | | | | | | | | | |
Collapse
|
2
|
Peng Z, Li Y, Xia S, Dai Q, Yin L, Chen M, Yang W, Shao G, Lin Q. Expression of nuclear receptor co‑activator 7 protein is associated with poor prognosis of breast cancer. Oncol Lett 2024; 27:278. [PMID: 38699661 PMCID: PMC11063752 DOI: 10.3892/ol.2024.14411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/25/2024] [Indexed: 05/05/2024] Open
Abstract
Nuclear receptor coactivator 7 (NCOA7) is an estrogen receptor binding protein. Its role in breast cancer progression has so far remained elusive. The present study aimed to determine the expression levels of NCOA7 in breast tumor samples and confirmed its potential utility as a breast cancer prognostic biomarker. The expression of NCOA7 was detected by immunohistochemical staining in 241 breast cancer tumor samples and 163 adjacent normal tissue samples. The association of NCOA7 expression with the clinicopathological characteristics and overall survival were statistically analyzed. Cell proliferation was determined by Cell Counting Kit-8 and colony-formation assays. Cell migration was detected using wound-healing and Transwell assays. NCOA7 was positively expressed in 44% of breast tumor tissues. The expression of NCOA7 was positively associated with tumor size (T-stage; P=0.005) and lymph node metastasis (N-stage; P=0.008). Additional statistical analysis indicated that the expression of NCOA7 was associated with patient age, tumor size and lymph node metastasis in patients with triple-negative breast cancer (TNBC) compared with that in patients with non-TNBC. The overall survival of patients with NCOA7-positive breast cancer was significantly lower than that of patients with NCOA7-negative breast cancer (P=0.006). Among the patients with lymph node metastasis, the overall survival was reversely associated with the expression of NCOA7 (P=0.042). Furthermore, knockdown of NCOA7 expression in breast cancer T47D and MCF7 cells significantly inhibited both cell proliferation and migration, suggesting that this protein may exert a role in driving breast cancer progression. Taken together, these results indicate that the expression of NCOA7 is associated with poor prognosis of breast cancer and suggest that this protein may be a driver for metastasis and a potential therapeutic target for advanced breast cancer.
Collapse
Affiliation(s)
- Ziluo Peng
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yanlin Li
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Song Xia
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Qian Dai
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Liang Yin
- Department of Breast Surgery, Jiangsu University Affiliated People's Hospital, Zhenjiang, Jiangsu 212050, P.R. China
| | - Miao Chen
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
- Department of Pathology, Jiangsu University Affiliated People's Hospital, Zhenjiang, Jiangsu 212050, P.R. China
| | - Wannian Yang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Genbao Shao
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Qiong Lin
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
3
|
You S, Xu J, Guo Y, Guo X, Zhang Y, Zhang N, Sun G, Sun Y. E3 ubiquitin ligase WWP2 as a promising therapeutic target for diverse human diseases. Mol Aspects Med 2024; 96:101257. [PMID: 38430667 DOI: 10.1016/j.mam.2024.101257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
Mammalian E3 ubiquitin ligases have emerged in recent years as critical regulators of cellular homeostasis due to their roles in targeting substrate proteins for ubiquitination and triggering subsequent downstream signals. In this review, we describe the multiple roles of WWP2, an E3 ubiquitin ligase with unique and important functions in regulating a wide range of biological processes, including DNA repair, gene expression, signal transduction, and cell-fate decisions. As such, WWP2 has evolved to play a key role in normal physiology and diseases, such as tumorigenesis, skeletal development and diseases, immune regulation, cardiovascular disease, and others. We attempt to provide an overview of the biochemical, physiological, and pathophysiological roles of WWP2, as well as open questions for future research, particularly in the context of putative therapeutic opportunities.
Collapse
Affiliation(s)
- Shilong You
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiaqi Xu
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yushan Guo
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaofan Guo
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ying Zhang
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China.
| | - Naijin Zhang
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility, National Health Commission, China Medical University, Shenyang, Liaoning, China.
| | - Guozhe Sun
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Yingxian Sun
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
4
|
Wang H, Lian X, Wang K, Wang S. WWP2 binds to NKRF, enhances the NF-κB signaling, and promotes malignant phenotypes of acute myeloid leukemia cells. Biochem Cell Biol 2024; 102:85-95. [PMID: 37921219 DOI: 10.1139/bcb-2022-0360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023] Open
Abstract
Acute myeloid leukemia (AML) is one of the hematological malignancies with a high recurrence rate. WW domain-containing E3 ubiquitin protein ligase 2 (WWP2) is identified as a pivotal regulator of tumor progression. This study aimed to assess the possible role of WWP2 in AML. Analysis of the GEPIA database indicated an elevated WWP2 expression in AML. We established stable WWP2-overexpressed or WWP2-silenced cells using lentivirus loaded with cDNA encoding WWP2 mRNA or shRNA targeting WWP2. Notably, WWP2 overexpression facilitated cell proliferation and cell cycle progression, which was manifested as the increase of colony formation number, S-phase percentage and cell cycle related protein levels. As observed, WWP2 knockdown presented opposite effects, leading to inhibition of tumorigenicity. Strikingly, WWP2 knockdown induced apoptosis, accompanied by upregulation of pro-apoptosis proteins cleaved caspase-9, Bax and cleaved caspase-3 and downregulation of anti-apoptosis protein Bcl-2. Functionally, we further confirmed that WWP2 overexpression enhanced the NF-κB signaling and upregulated the levels of downstream genes, which may contribute to aggravating the development of AML. More importantly, by co-immunoprecipitation assay, we verified that WWP2 bound to NF-κB-repressing factor (NKRF) and promoted NKRF ubiquitylation. Dramatically, NKRF overexpression abolished the role of WWP2 in facilitating the process of AML. Overall, our observations confirm that WWP2 exerts a critical role in the tumorigenicity of AML, and NKRF is regarded as an essential factor in the WWP2-mediated AML progression. WWP2 may be proposed as a promising target of AML.
Collapse
Affiliation(s)
- Hongjia Wang
- Department of Hematology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xin Lian
- Department of Hematology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Kexin Wang
- Department of Hematology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shuye Wang
- Department of Hematology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|