1
|
Huerta MÁ, Cisneros E, Alique M, Roza C. Strategies for measuring non-evoked pain in preclinical models of neuropathic pain: Systematic review. Neurosci Biobehav Rev 2024; 163:105761. [PMID: 38852847 DOI: 10.1016/j.neubiorev.2024.105761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
The development of new analgesics for neuropathic pain treatment is crucial. The failure of promising drugs in clinical trials may be related to the over-reliance on reflex-based responses (evoked pain) in preclinical drug testing, which may not fully represent clinical neuropathic pain, characterized by spontaneous non-evoked pain (NEP). Hence, strategies for assessing NEP in preclinical studies emerged. This systematic review identified 443 articles evaluating NEP in neuropathic pain models (mainly traumatic nerve injuries in male rodents). An exponential growth in NEP evaluation was observed, which was assessed using 48 different tests classified in 12 NEP-related outcomes: anxiety, exploration/locomotion, paw lifting, depression, conditioned place preference, gait, autotomy, wellbeing, facial grooming, cognitive impairment, facial pain expressions and vocalizations. Although most of these outcomes showed clear limitations, our analysis suggests that conditioning-associated outcomes, pain-related comorbidities, and gait evaluation may be the most effective strategies. Moreover, a minimal part of the studies evaluated standard analgesics. The greater emphasis on evaluating NEP aligning with clinical pain symptoms may enhance analgesic drug development, improving clinical translation.
Collapse
Affiliation(s)
- Miguel Á Huerta
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada 18016, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, 18100 Armilla, Granada, Spain; Biosanitary Research Institute ibs.GRANADA, Granada 18012, Spain
| | - Elsa Cisneros
- Health Sciences School, Centro Universitario Internacional de Madrid (CUNIMAD), Madrid, Spain; Health Sciences School, Universidad Internacional de La Rioja (UNIR), Logroño, Spain
| | - Matilde Alique
- Department of System's Biology, Medical School, University of Alcala de Henares, Alcalá de Henares, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid 28034, Spain
| | - Carolina Roza
- Department of System's Biology, Medical School, University of Alcala de Henares, Alcalá de Henares, Spain.
| |
Collapse
|
2
|
O'Brien JA, Austin PJ. Minocycline Abrogates Individual Differences in Nerve Injury-Evoked Affective Disturbances in Male Rats and Prevents Associated Supraspinal Neuroinflammation. J Neuroimmune Pharmacol 2024; 19:30. [PMID: 38878098 PMCID: PMC11180027 DOI: 10.1007/s11481-024-10132-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/08/2024] [Indexed: 06/19/2024]
Abstract
Chronic neuropathic pain precipitates a complex range of affective and behavioural disturbances that differ markedly between individuals. While the reasons for differences in pain-related disability are not well understood, supraspinal neuroimmune interactions are implicated. Minocycline has antidepressant effects in humans and attenuates affective disturbances in rodent models of pain, and acts by reducing neuroinflammation in both the spinal cord and brain. Previous studies, however, tend not to investigate how minocycline modulates individual affective responses to nerve injury, or rely on non-naturalistic behavioural paradigms that fail to capture the complexity of rodent behaviour. We investigated the development and resolution of pain-related affective disturbances in nerve-injured male rats by measuring multiple spontaneous ethological endpoints on a longitudinal naturalistic foraging paradigm, and the effect of chronic oral minocycline administration on these changes. Disrupted foraging behaviours appeared in 22% of nerve-injured rats - termed 'affected' rats - and were present at day 14 but partially resolved by day 21 post-injury. Minocycline completely prevented the emergence of an affected subgroup while only partly attenuating mechanical allodynia, dissociating the relationship between pain and affect. This was associated with a lasting downregulation of ΔFosB expression in ventral hippocampal neurons at day 21 post-injury. Markers of microglia-mediated neuroinflammation were not present by day 21, however proinflammatory microglial polarisation was apparent in the medial prefrontal cortex of affected rats and not in CCI minocycline rats. Individual differences in affective disturbances following nerve injury are therefore temporally related to altered microglial morphology and hippocampal neuronal activation, and are abrogated by minocycline.
Collapse
Affiliation(s)
- Jayden A O'Brien
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Paul J Austin
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Deep Learning-Based Grimace Scoring Is Comparable to Human Scoring in a Mouse Migraine Model. J Pers Med 2022; 12:jpm12060851. [PMID: 35743636 PMCID: PMC9225619 DOI: 10.3390/jpm12060851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/16/2022] [Accepted: 05/21/2022] [Indexed: 01/03/2023] Open
Abstract
Pain assessment is essential for preclinical and clinical studies on pain. The mouse grimace scale (MGS), consisting of five grimace action units, is a reliable measurement of spontaneous pain in mice. However, MGS scoring is labor-intensive and time-consuming. Deep learning can be applied for the automatic assessment of spontaneous pain. We developed a deep learning model, the DeepMGS, that automatically crops mouse face images, predicts action unit scores and total scores on the MGS, and finally infers whether pain exists. We then compared the performance of DeepMGS with that of experienced and apprentice human scorers. The DeepMGS achieved an accuracy of 70–90% in identifying the five action units of the MGS, and its performance (correlation coefficient = 0.83) highly correlated with that of an experienced human scorer in total MGS scores. In classifying pain and no pain conditions, the DeepMGS is comparable to the experienced human scorer and superior to the apprentice human scorers. Heatmaps generated by gradient-weighted class activation mapping indicate that the DeepMGS accurately focuses on MGS-relevant areas in mouse face images. These findings support that the DeepMGS can be applied for quantifying spontaneous pain in mice, implying its potential application for predicting other painful conditions from facial images.
Collapse
|
4
|
Ishida K, Tanaka S, Shen D, Matsui S, Fuseya S, Shindo T, Kawamata M. Calcitonin gene-related peptide is not involved in neuropathic pain induced by partial sciatic nerve ligation in mice. Neurosci Lett 2022; 778:136615. [DOI: 10.1016/j.neulet.2022.136615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022]
|
5
|
Song Y, Kemprecos H, Wang J, Chen Z. A Predictive Coding Model for Evoked and Spontaneous Pain Perception. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:2964-2967. [PMID: 31946512 DOI: 10.1109/embc.2019.8857298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pain is a complex multidimensional experience, and pain perception is still incompletely understood. Here we combine animal behavior, electrophysiology, and computer modeling to dissect mechanisms of evoked and spontaneous pain. We record the local field potentials (LFPs) from the primary somatosensory cortex (S1) and anterior cingulate cortex (ACC) of freely behaving rats during pain episodes, and develop a predictive coding model to investigate the temporal coordination of oscillatory activity between the S1 and ACC. Our preliminary results from computational simulations support the experimental findings and provide new predictions.
Collapse
|
6
|
Xiao Z, Martinez E, Kulkarni PM, Zhang Q, Hou Q, Rosenberg D, Talay R, Shalot L, Zhou H, Wang J, Chen ZS. Cortical Pain Processing in the Rat Anterior Cingulate Cortex and Primary Somatosensory Cortex. Front Cell Neurosci 2019; 13:165. [PMID: 31105532 PMCID: PMC6492531 DOI: 10.3389/fncel.2019.00165] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/08/2019] [Indexed: 01/08/2023] Open
Abstract
Pain is a complex multidimensional experience encompassing sensory-discriminative, affective-motivational and cognitive-emotional components mediated by different neural mechanisms. Investigations of neurophysiological signals from simultaneous recordings of two or more cortical circuits may reveal important circuit mechanisms on cortical pain processing. The anterior cingulate cortex (ACC) and primary somatosensory cortex (S1) represent two most important cortical circuits related to sensory and affective processing of pain. Here, we recorded in vivo extracellular activity of the ACC and S1 simultaneously from male adult Sprague-Dale rats (n = 5), while repetitive noxious laser stimulations were delivered to animalÕs hindpaw during pain experiments. We identified spontaneous pain-like events based on stereotyped pain behaviors in rats. We further conducted systematic analyses of spike and local field potential (LFP) recordings from both ACC and S1 during evoked and spontaneous pain episodes. From LFP recordings, we found stronger phase-amplitude coupling (theta phase vs. gamma amplitude) in the S1 than the ACC (n = 10 sessions), in both evoked (p = 0.058) and spontaneous pain-like behaviors (p = 0.017, paired signed rank test). In addition, pain-modulated ACC and S1 neuronal firing correlated with the amplitude of stimulus-induced event-related potentials (ERPs) during evoked pain episodes. We further designed statistical and machine learning methods to detect pain signals by integrating ACC and S1 ensemble spikes and LFPs. Together, these results reveal differential coding roles between the ACC and S1 in cortical pain processing, as well as point to distinct neural mechanisms between evoked and putative spontaneous pain at both LFP and cellular levels.
Collapse
Affiliation(s)
- Zhengdong Xiao
- Department of Instrument Science and Technology, Zhejiang University, Hangzhou, China.,Department of Psychiatry, New York University School of Medicine, New York, NY, United States
| | - Erik Martinez
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States.,Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, United States
| | - Prathamesh M Kulkarni
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States
| | - Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, United States
| | - Qianning Hou
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States.,Department of Biophysics, University of Science and Technology of China, Hefei, China
| | - David Rosenberg
- New York University School of Medicine, New York, NY, United States
| | - Robert Talay
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, United States
| | - Leor Shalot
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, United States
| | - Haocheng Zhou
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, United States
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, United States.,Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, United States
| | - Zhe Sage Chen
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States.,Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, United States.,Neuroscience Institute, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
7
|
Nagakura Y. Giving priority to preclinical pain measures resistant to existing drugs for developing innovative analgesics. Drug Dev Res 2018; 79:147-156. [PMID: 29732584 DOI: 10.1002/ddr.21429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 12/20/2022]
Abstract
Preclinical Research & Development Chronic pain is a major health and socioeconomic burden because of its high prevalence, negative influence on patients' physical and/or emotional conditions, and huge costs to society. The responses of chronic pain patients to analgesic therapies vary substantially from individual to individual, and no more than a minority of chronic pain patients with various etiologies such as neuropathy and inflammation are, in fact, successfully relieved by existing drugs including opioid analgesics, nonopioid analgesics, antiepileptics, and antidepressants. The large primary unmet medical need would therefore be the patient domain that does not respond well to existing drugs. Accordingly, the expected profile for innovative analgesics would not be efficacy in the responder patient domain, but significant efficacy in patients with existing drug-resistant chronic pain. Meanwhile, the current gold standard in preclinical pain measures for the screening of analgesic candidates is existing drug-sensitive pain measures in animal models of chronic pain. Analgesic candidates screened using such preclinical pain measures during the last decades have been far from fulfilling the expected profile for innovative analgesics. Given that it is unlikely that such existing drug-sensitive pain measures are the best approach to developing innovative analgesics, one of the other approaches would be giving priority to existing drug-resistant pain measures in preclinical research. This review introduces potentially applicable existing drug-resistant pain measures published so far and suggests that the use of them would lead to the development of innovative analgesics.
Collapse
Affiliation(s)
- Yukinori Nagakura
- Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kohbata, Aomori-shi, Aomori, 030-0943, Japan.,Center for Brain and Health Sciences, Aomori University, 109-1 Takama, Ishie, Aomori-shi, Aomori, 038-0003, Japan
| |
Collapse
|
8
|
Battaglini E, Park SB, Barnes EH, Goldstein D. A double blind, placebo controlled, phase II randomised cross-over trial investigating the use of duloxetine for the treatment of chemotherapy-induced peripheral neuropathy. Contemp Clin Trials 2018; 70:135-138. [PMID: 29680317 DOI: 10.1016/j.cct.2018.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) is a significant side effect of cancer treatment, potentially leading to early cessation of chemotherapy, enduring symptoms and long-lasting disability. Evidence from preclinical and clinical studies suggests that duloxetine, a serotonin-noradrenaline reuptake inhibitor, may be effective in the symptomatic treatment of CIPN. This double blind, placebo controlled, phase II randomised cross-over trial aims to determine whether treatment with duloxetine results in a reduction in chronic neuropathic symptoms experienced as a result of neurotoxic chemotherapy treatment. METHODS/DESIGN Participants who have received neurotoxic chemotherapy and experience daily symptoms as a consequence of peripheral neuropathy will be randomly allocated to control or experimental group with a 1:1 allocation, stratified by chemotherapy type. The primary endpoint will be patient-reported CIPN symptoms, as assessed via the FACT/GOG-Ntx. As a secondary objective, the trial will investigate whether duloxetine improves neurophysiological parameters and functional status in patients who have received neurotoxic chemotherapy treatment. DISCUSSION This trial will investigate the effectiveness of duloxetine in reducing neuropathic symptoms following chemotherapy treatment, and aims to provide insight into the mechanisms underlying the symptomatic relief that duloxetine may provide. These results will be informative in advancing clinical knowledge regarding the treatment of CIPN.
Collapse
Affiliation(s)
- Eva Battaglini
- Prince of Wales Clinical School, University of New South Wales, Randwick, NSW, Australia
| | - Susanna B Park
- Prince of Wales Clinical School, University of New South Wales, Randwick, NSW, Australia; Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | | | - David Goldstein
- Prince of Wales Clinical School, University of New South Wales, Randwick, NSW, Australia; Department of Medical Oncology, Prince of Wales Hospital, Randwick, NSW, Australia.
| |
Collapse
|
9
|
An automated method by which effects of compounds on locomotor activity and spontaneous neuropathic pain-specific movements can be simultaneously evaluated in rats with chronic-constriction nerve injury. Eur J Pharm Sci 2017; 96:551-559. [DOI: 10.1016/j.ejps.2016.10.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/10/2016] [Accepted: 10/30/2016] [Indexed: 11/22/2022]
|
10
|
Nagakura Y. The need for fundamental reforms in the pain research field to develop innovative drugs. Expert Opin Drug Discov 2016; 12:39-46. [PMID: 27838932 DOI: 10.1080/17460441.2017.1261108] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Chronic pain is a major healthcare issue owing to its high prevalence, significant physical and emotional burden on the patients, and huge financial burden on the society. The efficacy of currently available medications is unsatisfactory owing to their limited effect size and the low responder rate (less than 50%). Thus, there is a large unmet need for innovative therapies for chronic pain. Areas covered: In this review, the author points out the need for fundamental reforms in pain research. For the last several decades, drug discovery research has extensively focused on designing new therapies using animal models of chronic pain. It has, however, made insufficient progress with respect to the launch of innovative analgesic drugs, because the translation from preclinical to clinical stages has not been satisfactory. Thus, the strategies for developing innovative analgesic drugs are discussed. Expert opinion: Points to be considered in the discovery of drugs for pain relief include: (1) the exclusion of bias incorporation and the alignment of clinical and preclinical endpoints in the assessment of analgesic efficacy; (2) the understanding of primary unmet needs; (3) the assessment of new therapies by biomarker-prioritized frameworks, and (4) the stratification of chronic pain sufferers.
Collapse
Affiliation(s)
- Yukinori Nagakura
- a Faculty of Pharmaceutical Sciences , Aomori University , Aomori-shi , Aomori , Japan
| |
Collapse
|
11
|
Cho K, Jang JH, Kim SP, Lee SH, Chung SC, Kim IY, Jang DP, Jung SJ. Analysis of Nociceptive Information Encoded in the Temporal Discharge Patterns of Cutaneous C-Fibers. Front Comput Neurosci 2016; 10:118. [PMID: 27917120 PMCID: PMC5114282 DOI: 10.3389/fncom.2016.00118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 11/04/2016] [Indexed: 01/15/2023] Open
Abstract
The generation of pain signals from primary afferent neurons is explained by a labeled-line code. However, this notion cannot apply in a simple way to cutaneous C-fibers, which carry signals from a variety of receptors that respond to various stimuli including agonist chemicals. To represent the discharge patterns of C-fibers according to different agonist chemicals, we have developed a quantitative approach using three consecutive spikes. By using this method, the generation of pain in response to chemical stimuli is shown to be dependent on the temporal aspect of the spike trains. Furthermore, under pathological conditions, gamma-aminobutyric acid resulted in pain behavior without change of spike number but with an altered discharge pattern. Our results suggest that information about the agonist chemicals may be encoded in specific temporal patterns of signals in C-fibers, and nociceptive sensation may be influenced by the extent of temporal summation originating from the temporal patterns.
Collapse
Affiliation(s)
- Kyeongwon Cho
- Department of Biomedical Engineering, Hanyang University Seoul, South Korea
| | - Jun Ho Jang
- Department of Biomedical Science, Hanyang University Seoul, South Korea
| | - Sung-Phil Kim
- Department of Human and Systems Engineering, Ulsan National Institute of Science and Technology Ulsan, South Korea
| | - Sang Hoon Lee
- Department of Biomedical Science, Hanyang University Seoul, South Korea
| | - Soon-Cheol Chung
- Department of Biomedical Engineering, College of Biomedical & Health Science, BK21+ Research Institute of Biomedical Engineering, Konkuk University Chungju, South Korea
| | - In Young Kim
- Department of Biomedical Engineering, Hanyang University Seoul, South Korea
| | - Dong Pyo Jang
- Department of Biomedical Engineering, Hanyang University Seoul, South Korea
| | - Sung Jun Jung
- Department of Biomedical Science, Hanyang University Seoul, South Korea
| |
Collapse
|
12
|
Yamamoto S, Kawashiri T, Higuchi H, Tsutsumi K, Ushio S, Kaname T, Shirahama M, Egashira N. Behavioral and pharmacological characteristics of bortezomib-induced peripheral neuropathy in rats. J Pharmacol Sci 2015; 129:43-50. [PMID: 26362518 DOI: 10.1016/j.jphs.2015.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/03/2015] [Accepted: 08/19/2015] [Indexed: 10/23/2022] Open
Abstract
Bortezomib, an effective anticancer drug for multiple myeloma, often causes peripheral neuropathy which is mainly characterized by numbness and painful paresthesia. Nevertheless, there is no effective strategy to escape or treat bortezomib-induced peripheral neuropathy (BIPN), because we have understood few mechanism of this side effect. In this study, we evaluated behavioral and pathological characteristics of BIPN, and investigated pharmacological efficacy of various analgesic drugs and adjuvants on mechanical allodynia induced by bortezomib treatment in rats. The repeated administration of bortezomib induced mechanical and cold allodynia. There was axonal degeneration of sciatic nerve behind these neuropathic symptoms. Furthermore, the exposure to bortezomib shortened neurite length in PC12 cells. Finally, the result of evaluation of anti-allodynic potency, oral administration of tramadol (10 mg/kg), pregabalin (3 mg/kg), duloxetine (30 mg/kg) or mexiletine (100 mg/kg), but not amitriptyline or diclofenac, transiently relieved the mechanical allodynia induced by bortezomib. These results suggest that axonal degeneration of the sciatic nerve is involved in BIPN and that some analgesic drugs and adjuvants are effective in the relief of painful neuropathy.
Collapse
Affiliation(s)
- Shota Yamamoto
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takehiro Kawashiri
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hitomi Higuchi
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kuniaki Tsutsumi
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Soichiro Ushio
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takanori Kaname
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masafumi Shirahama
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Nobuaki Egashira
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
13
|
Comparison of operant escape and reflex tests of nociceptive sensitivity. Neurosci Biobehav Rev 2015; 51:223-42. [PMID: 25660956 DOI: 10.1016/j.neubiorev.2015.01.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 01/17/2015] [Accepted: 01/27/2015] [Indexed: 01/17/2023]
Abstract
Testing of reflexes such as flexion/withdrawal or licking/guarding is well established as the standard for evaluating nociceptive sensitivity and its modulation in preclinical investigations of laboratory animals. Concerns about this approach have been dismissed for practical reasons - reflex testing requires no training of the animals; it is simple to instrument; and responses are characterized by observers as latencies or thresholds for evocation. In order to evaluate this method, the present review summarizes a series of experiments in which reflex and operant escape responding are compared in normal animals and following surgical models of neuropathic pain or pharmacological intervention for pain. Particular attention is paid to relationships between reflex and escape responding and information on the pain sensitivity of normal human subjects or patients with pain. Numerous disparities between results for reflex and operant escape measures are described, but the results of operant testing are consistent with evidence from humans. Objective reasons are given for experimenters to choose between these and other methods of evaluating the nociceptive sensitivity of laboratory animals.
Collapse
|
14
|
Abstract
INTRODUCTION Neuropathic pain is a costly and disabling condition, which affects up to 8% of the population. Available therapies often provide incomplete pain relief and treatment-related side effects are common. Preclinical neuropathic pain models have facilitated identification of several promising targets, which have progressed to human clinical phases of evaluation. AREAS COVERED A systematic database search yielded 25 new molecular entities with specified pharmacological mechanisms that have reached Phase II or III clinical trials. These include calcium channel antagonists, vanilloid receptor antagonists, potassium channel agonists, NMDA antagonists, novel opioid receptor agonists, histamine H3 receptor antagonists, a novel sodium channel antagonist, serotonin modulators, a novel acetylcholine receptor agonist, α-2b adrenoreceptor agonist, cannabinoid CB2 receptor agonist, nitric oxide synthase inhibitor, orexin receptor antagonist, angiotensin II 2 antagonist, imidazoline I2 receptor agonist, apoptosis inhibitor and fatty acid amide hydrolase inhibitor. EXPERT OPINION Although the diversity of pharmacological mechanisms of interest emphasise the complexity of neuropathic pain transmission, the considerable number of agents under development reflect a continued enthusiasm in drug development for neuropathic pain. Ongoing enhancements in methodology of both preclinical and clinical research and closer translation in both directions are expected to more efficiently identify new agents, which will improve the management of neuropathic pain.
Collapse
Affiliation(s)
- Ian Gilron
- Queen's University, Kingston General Hospital, Departments of Anesthesiology & Perioperative Medicine and Biomedical & Molecular Sciences , 76 Stuart St, Kingston, ON K7L 2V7 , Canada +1 613 548 1375 ;
| | | |
Collapse
|
15
|
Murai N, Aoki T, Tamura S, Sekizawa T, Kakimoto S, Tsukamoto M, Oe T, Enomoto R, Hamakawa N, Matsuoka N. AS1069562, the (+)-isomer of indeloxazine, exerts analgesic effects in a rat model of neuropathic pain with unique characteristics in spinal monoamine turnover. J Pharmacol Exp Ther 2014; 348:372-82. [PMID: 24338505 DOI: 10.1124/jpet.113.208686] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
AS1069562 [(R)-2-[(1H-inden-7-yloxy)methyl]morpholine monobenzenesulfonate] is the (+)-isomer of indeloxazine, which had been used clinically for the treatment of cerebrovascular diseases with multiple pharmacological actions, including serotonin (5-HT) and norepinephrine (NE) reuptake inhibition. Here we investigated the analgesic effects of AS1069562 in a rat model of chronic constriction injury (CCI)-induced neuropathic pain and the spinal monoamine turnover. These effects were compared with those of the antidepressants duloxetine and amitriptyline. AS1069562 significantly elevated extracellular 5-HT and NE levels in the rat spinal dorsal horn, although its 5-HT and NE reuptake inhibition was much weaker than that of duloxetine in vitro. In addition, AS1069562 increased the ratio of the contents of both 5-HT and NE to their metabolites in rat spinal cord, whereas duloxetine slightly increased only the ratio of the content of 5-HT to its metabolite. In CCI rats, AS1069562 and duloxetine significantly ameliorated mechanical allodynia, whereas amitriptyline did not. AS1069562 and amitriptyline significantly ameliorated thermal hyperalgesia, and duloxetine tended to ameliorate it. Furthermore, AS1069562, duloxetine, and amitriptyline significantly improved spontaneous pain-associated behavior. In a gastric emptying study, AS1069562 affected gastric emptying at the same dose that exerted analgesia in CCI rats. On the other hand, duloxetine and amitriptyline significantly reduced gastric emptying at lower doses than those that exerted analgesic effects. These results indicate that AS1069562 broadly improved various types of neuropathic pain-related behavior in CCI rats with unique characteristics in spinal monoamine turnover, suggesting that AS1069562 may have potential as a treatment option for patients with neuropathic pain, with a different profile from currently available antidepressants.
Collapse
Affiliation(s)
- Nobuhito Murai
- Pharmacology Research Laboratories (N.Mu., T.A., S.T., T.S., S.K., M.T., T.O., R.E., N.Ma.) and Analysis & Pharmacokinetics Research Laboratories (N.H.), Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Verma V, Singh N, Singh Jaggi A. Pregabalin in neuropathic pain: evidences and possible mechanisms. Curr Neuropharmacol 2014; 12:44-56. [PMID: 24533015 PMCID: PMC3915349 DOI: 10.2174/1570159x1201140117162802] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/02/2013] [Accepted: 09/25/2013] [Indexed: 12/13/2022] Open
Abstract
Pregabalin is an antagonist of voltage gated Ca2+ channels and specifically binds to alpha-2-delta subunit to produce antiepileptic and analgesic actions. It successfully alleviates the symptoms of various types of neuropathic pain and presents itself as a first line therapeutic agent with remarkable safety and efficacy. Preclinical studies in various animal models of neuropathic pain have shown its effectiveness in treating the symptoms like allodynia and hyperalgesia. Clinical studies in different age groups and in different types of neuropathic pain (peripheral diabetic neuropathy, fibromyalgia, post-herpetic neuralgia, cancer chemotherapy-induced neuropathic pain) have projected it as the most effective agent either as monotherapy or in combined regimens in terms of cost effectiveness, tolerability and overall improvement in neuropathic pain states. Preclinical studies employing pregabalin in different neuropathic pain models have explored various molecular targets and the signaling systems including Ca2+ channel-mediated neurotransmitter release, activation of excitatory amino acid transporters (EAATs), potassium channels and inhibition of pathways involving inflammatory mediators. The present review summarizes the important aspects of pregabalin as analgesic in preclinical and clinical studies as well as focuses on the possible mechanisms.
Collapse
Affiliation(s)
- Vivek Verma
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala-147002, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala-147002, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala-147002, India
| |
Collapse
|
17
|
Choi JG, Kang SY, Kim JM, Roh DH, Yoon SY, Park JB, Lee JH, Kim HW. Antinociceptive Effect of Cyperi rhizoma and Corydalis tuber Extracts on Neuropathic Pain in Rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2012; 16:387-92. [PMID: 23269900 PMCID: PMC3526742 DOI: 10.4196/kjpp.2012.16.6.387] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 10/23/2012] [Accepted: 11/09/2012] [Indexed: 11/15/2022]
Abstract
In this study, we examined the antinociceptive effect of Cyperi rhizoma (CR) and Corydalis tuber (CT) extracts using a chronic constriction injury-induced neuropathic pain rat model. After the ligation of sciatic nerve, neuropathic pain behavior such as mechanical allodynia and thermal hyperalgesia were rapidly induced and maintained for 1 month. Repeated treatment of CR or CT (per oral, 10 or 30 mg/kg, twice a day) was performed either in induction (day 0~5) or maintenance (day 14~19) period of neuropathic pain state. Treatment of CR or CT at doses of 30 mg/kg in the induction and maintenance periods significantly decreased the nerve injury-induced mechanical allodynia. In addition, CR and CT at doses of 10 or 30 mg/kg alleviated thermal heat hyperalgesia when they were treated in the maintenance period. Finally, CR or CT (30 mg/kg) treated during the induction period remarkably reduced the nerve injury-induced phosphorylation of NMDA receptor NR1 subunit (pNR1) in the spinal dorsal horn. Results of this study suggest that extracts from CR and CT may be useful to alleviate neuropathic pain.
Collapse
Affiliation(s)
- Jae-Gyun Choi
- Department of Physiology and Brain Research Institute, Chungnam National University Medical School, Daejeon 301-747, Korea
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Nagakura Y, Ishikawa G, Kawasaki-Yatsugi S, Yoshimi E, Takeshita N, Aoki T, Shimizu Y, Ito H. [New methodologies in drug discovery research for analgesic agents: automated measurement of spontaneous pain-associated animal behaviors for alignment of preclinical/clinical endpoints]. Nihon Yakurigaku Zasshi 2012; 140:211-215. [PMID: 23138318 DOI: 10.1254/fpj.140.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|