1
|
Hernández-Vásquez CI, García-García JH, Pérez-Ortega ER, Martínez-Segundo AG, Damas-Buenrostro LC, Pereyra-Alférez B. Expression patterns of Mal genes and association with differential maltose and maltotriose transport rate of two Saccharomyces pastorianus yeasts. Appl Environ Microbiol 2024; 90:e0039724. [PMID: 38975758 PMCID: PMC11267901 DOI: 10.1128/aem.00397-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/22/2024] [Indexed: 07/09/2024] Open
Abstract
Beer brewing is a well-known process that still faces great challenges, such as the total consumption of sugars present in the fermentation media. Lager-style beer, a major worldwide beer type, is elaborated by Saccharomyces pastorianus (Sp) yeast, which must ferment high maltotriose content worts, but its consumption represents a notable problem, especially among Sp strains belonging to group I. Factors, such as fermentation conditions, presence of maltotriose transporters, transporter copy number variation, and genetic regulation variations contribute to this issue. We assess the factors affecting fermentation in two Sp yeast strains: SpIB1, with limited maltotriose uptake, and SpIB2, known for efficient maltotriose transport. Here, SpIB2 transported significantly more maltose (28%) and maltotriose (32%) compared with SpIB1. Furthermore, SpIB2 expressed all MAL transporters (ScMALx1, SeMALx1, ScAGT1, SeAGT1, MTT1, and MPHx) on the first day of fermentation, whereas SpIB1 only exhibited ScMalx1, ScAGT1, and MPH2/3 genes. Some SpIB2 transporters had polymorphic transmembrane domains (TMD) resembling MTT1, accompanied by higher expression of these transporters and its positive regulator genes, such as MAL63. These findings suggest that, in addition to the factors mentioned above, positive regulators of Mal transporters contribute significantly to phenotypic diversity in maltose and maltotriose consumption among the studied lager yeast strains.IMPORTANCEBeer, the third most popular beverage globally with a 90% market share in the alcoholic beverage industry, relies on Saccharomyces pastorianus (Sp) strains for lager beer production. These strains exhibit phenotypic diversity in maltotriose consumption, a crucial process for the acceptable organoleptic profile in lager beer. This diversity ranges from Sp group II strains with a notable maltotriose-consuming ability to Sp group I strains with limited capacity. Our study highlights that differential gene expression of maltose and maltotriose transporters and its upstream trans-elements, such as MAL gene-positive regulators, adds complexity to this variation. This insight can contribute to a more comprehensive analysis needed to the development of controlled and efficient biotechnological processes in the beer brewing industry.
Collapse
Affiliation(s)
- César I. Hernández-Vásquez
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Instituto de Biotecnología, Nuevo León, Mexico
| | - Jorge H. García-García
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Instituto de Biotecnología, Nuevo León, Mexico
| | | | | | | | - Benito Pereyra-Alférez
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Instituto de Biotecnología, Nuevo León, Mexico
| |
Collapse
|
2
|
Alves-Jr SL, Herberts RA, Hollatz C, Miletti LC, Stambuk BU. Maltose and Maltotriose Active Transport and Fermentation bySaccharomyces Cerevisiaes. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2007-0411-01] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Sergio L. Alves-Jr
- Programa de Pós-graduação Interunidades em Biotecnologia, USP-BUTANTAN-IPT, São Paulo, Brazil
| | - Ricardo A. Herberts
- Programa de Pós-graduação em Biotecnologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Claudia Hollatz
- Programa de Pós-graduação em Biotecnologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Luiz C. Miletti
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Boris U. Stambuk
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
3
|
Vanbeneden N, Vanderputten D, Vanderhaegen B, Derdelinckx G, Van Landschoot A. Influence of the Sugar Composition of the Added Extract on the Refermentation of Beer in Bottles. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-64-0206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Nele Vanbeneden
- Centre for Malting and Brewing Science, Department of Food and Microbial Technology, K.U. Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium
| | - Dana Vanderputten
- Department of Industrial Sciences, Hogeschool Gent, Voskenslaan 270, B-9000 Gent, Belgium
| | - Bart Vanderhaegen
- Centre for Malting and Brewing Science, Department of Food and Microbial Technology, K.U. Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium
| | - Guy Derdelinckx
- Centre for Malting and Brewing Science, Department of Food and Microbial Technology, K.U. Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium
| | - Anita Van Landschoot
- Department of Industrial Sciences, Hogeschool Gent, Voskenslaan 270, B-9000 Gent, Belgium
| |
Collapse
|
4
|
Magalhães F, Vidgren V, Ruohonen L, Gibson B. Maltose and maltotriose utilisation by group I strains of the hybrid lager yeast Saccharomyces pastorianus. FEMS Yeast Res 2016; 16:fow053. [PMID: 27364826 PMCID: PMC5815069 DOI: 10.1093/femsyr/fow053] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/12/2016] [Accepted: 06/26/2016] [Indexed: 11/13/2022] Open
Abstract
Brewer's wort is a challenging environment for yeast as it contains predominantly α-glucoside sugars. There exist two subgroups of the lager yeast Saccharomyces pastorianus which differ in sugar utilisation. We performed wort fermentations and compared representative strains from both groups with respect to their ability to transport and ferment maltose and maltotriose. Additionally, we mapped the transporters MALx1, AGT1, MPHx and MTT1 by Southern blotting. Contrary to previous observations, group I comprises a diverse set of strains, with varying ability to transport and ferment maltotriose. Of the eight group I strains, three efficiently utilised maltotriose, a property enabled by the presence of transmembrane transporters SeAGT1 and MTT1 A58, a variant of the group I type strain (CBS1513) performed particularly well, taking up maltotriose at a higher rate than maltose and retaining significant transport activity at temperatures as low as 0°C. Analysis of transporter distribution in this strain revealed an increased copy number of the MTT1 gene, which encodes the only permease known with higher affinity for maltotriose than maltose and low temperature dependence for transport. We propose that much of the variation in lager yeast fermentation behaviour is determined by the presence or absence of specific transmembrane transporters.
Collapse
Affiliation(s)
- Frederico Magalhães
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, PO Box 1000, FI-02044 VTT, Espoo, Finland Department of Biotechnology and Chemical Technology, Aalto University, School of Chemical Technology, Kemistintie 1, PO Box 16100, FI-00076 Aalto, Espoo, Finland
| | - Virve Vidgren
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, PO Box 1000, FI-02044 VTT, Espoo, Finland
| | - Laura Ruohonen
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, PO Box 1000, FI-02044 VTT, Espoo, Finland
| | - Brian Gibson
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, PO Box 1000, FI-02044 VTT, Espoo, Finland
| |
Collapse
|
5
|
Verspreet J, Hemdane S, Dornez E, Cuyvers S, Delcour JA, Courtin CM. Maximizing the concentrations of wheat grain fructans in bread by exploring strategies to prevent their yeast ( Saccharomyces cerevisiae )-mediated degradation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:1397-1404. [PMID: 23339519 DOI: 10.1021/jf3050846] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The degradation of endogenous wheat grain fructans, oligosaccharides with possible health-promoting potential, during wheat whole meal bread making was investigated, and several strategies to prevent their degradation were evaluated. Up to 78.4 ± 5.2% of the fructans initially present in wheat whole meal were degraded during bread making by the action of yeast ( Saccharomyces cerevisiae ) invertase. The addition of sucrose to dough delayed fructan degradation but had no effect on final fructan concentrations. However, yeast growth conditions and yeast genotype did have a clear impact. A 3-fold reduction of fructan degradation could be achieved when the commercial bread yeast strain was replaced by yeast strains with lower sucrose degradation activity. Finally, fructan degradation during bread making could be prevented completely by the use of a yeast strain lacking invertase. These results show that the nutritional profile of bread can be enhanced through appropriate yeast technology.
Collapse
Affiliation(s)
- Joran Verspreet
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven (KU Leuven) , Kasteelpark Arenberg 20, Box 2463, 3001 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
6
|
Meneses FJ, Henschke PA, Jiranek V. A Survey of Industrial Strains ofSaccharomyces cerevisiaeReveals Numerous Altered Patterns of Maltose and Sucrose Utilisation. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2002.tb00556.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Graves T, Narendranath N, Power R. Development of a “Stress Model” Fermentation System for Fuel Ethanol Yeast Strains. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2007.tb00286.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Rautio J, Londesborough J. Maltose Transport by Brewer's Yeasts in Brewer's Wort. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2003.tb00166.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Liccioli T, Chambers PJ, Jiranek V. A novel methodology independent of fermentation rate for assessment of the fructophilic character of wine yeast strains. J Ind Microbiol Biotechnol 2010; 38:833-43. [PMID: 21076969 DOI: 10.1007/s10295-010-0854-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Accepted: 08/18/2010] [Indexed: 01/02/2023]
Abstract
The yeast Saccharomyces cerevisiae has a fundamental role in fermenting grape juice to wine. During alcoholic fermentation its catabolic activity converts sugars (which in grape juice are a near equal ratio of glucose and fructose) and other grape compounds into ethanol, carbon dioxide and sensorily important metabolites. However, S. cerevisiae typically utilises glucose and fructose with different efficiency: glucose is preferred and is consumed at a higher rate than fructose. This results in an increasing difference between the concentrations of glucose and fructose during fermentation. In this study 20 commercially available strains were investigated to determine their relative abilities to utilise glucose and fructose. Parameters measured included fermentation duration and the kinetics of utilisation of fructose when supplied as sole carbon source or in an equimolar mix with glucose. The data were then analysed using mathematical calculations in an effort to identify fermentation attributes which were indicative of overall fructose utilisation and fermentation performance. Fermentation durations ranged from 74.6 to over 150 h, with clear differences in the degree to which glucose utilisation was preferential. Given this variability we sought to gain a more holistic indication of strain performance that was independent of fermentation rate and therefore utilized the area under the curve (AUC) of fermentation of individual or combined sugars. In this way it was possible to rank the 20 strains for their ability to consume fructose relative to glucose. Moreover, it was shown that fermentations performed in media containing fructose as sole carbon source did not predict the fructophilicity of strains in wine-like conditions (equimolar mixture of glucose and fructose). This work provides important information for programs which seek to generate strains that are faster or more reliable fermenters.
Collapse
Affiliation(s)
- T Liccioli
- School of Agriculture, Food and Wine, The University of Adelaide, Australia
| | | | | |
Collapse
|
10
|
Duval EH, Alves SL, Dunn B, Sherlock G, Stambuk BU. Microarray karyotyping of maltose-fermenting Saccharomyces yeasts with differing maltotriose utilization profiles reveals copy number variation in genes involved in maltose and maltotriose utilization. J Appl Microbiol 2009; 109:248-59. [PMID: 20070441 DOI: 10.1111/j.1365-2672.2009.04656.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS We performed an analysis of maltotriose utilization by 52 Saccharomyces yeast strains able to ferment maltose efficiently and correlated the observed phenotypes with differences in the copy number of genes possibly involved in maltotriose utilization by yeast cells. METHODS AND RESULTS The analysis of maltose and maltotriose utilization by laboratory and industrial strains of the species Saccharomyces cerevisiae and Saccharomyces pastorianus (a natural S. cerevisiae/Saccharomyces bayanus hybrid) was carried out using microscale liquid cultivation, as well as in aerobic batch cultures. All strains utilize maltose efficiently as a carbon source, but three different phenotypes were observed for maltotriose utilization: efficient growth, slow/delayed growth and no growth. Through microarray karyotyping and pulsed-field gel electrophoresis blots, we analysed the copy number and localization of several maltose-related genes in selected S. cerevisiae strains. While most strains lacked the MPH2 and MPH3 transporter genes, almost all strains analysed had the AGT1 gene and increased copy number of MALx1 permeases. CONCLUSIONS Our results showed that S. pastorianus yeast strains utilized maltotriose more efficiently than S. cerevisiae strains and highlighted the importance of the AGT1 gene for efficient maltotriose utilization by S. cerevisiae yeasts. SIGNIFICANCE AND IMPACT OF THE STUDY Our results revealed new maltotriose utilization phenotypes, contributing to a better understanding of the metabolism of this carbon source for improved fermentation by Saccharomyces yeasts.
Collapse
Affiliation(s)
- E H Duval
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | | | | | | |
Collapse
|
11
|
Molecular analysis of maltotriose active transport and fermentation by Saccharomyces cerevisiae reveals a determinant role for the AGT1 permease. Appl Environ Microbiol 2008; 74:1494-501. [PMID: 18203856 DOI: 10.1128/aem.02570-07] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Incomplete and/or sluggish maltotriose fermentation causes both quality and economic problems in the ale-brewing industry. Although it has been proposed previously that the sugar uptake must be responsible for these undesirable phenotypes, there have been conflicting reports on whether all the known alpha-glucoside transporters in Saccharomyces cerevisiae (MALx1, AGT1, and MPH2 and MPH3 transporters) allow efficient maltotriose utilization by yeast cells. We characterized the kinetics of yeast cell growth, sugar consumption, and ethanol production during maltose or maltotriose utilization by several S. cerevisiae yeast strains (both MAL constitutive and MAL inducible) and by their isogenic counterparts with specific deletions of the AGT1 gene. Our results clearly showed that yeast strains carrying functional permeases encoded by the MAL21, MAL31, and/or MAL41 gene in their plasma membranes were unable to utilize maltotriose. While both high- and low-affinity transport activities were responsible for maltose uptake from the medium, in the case of maltotriose, the only low-affinity (K(m), 36 +/- 2 mM) transport activity was mediated by the AGT1 permease. In conclusion, the AGT1 transporter is required for efficient maltotriose fermentation by S. cerevisiae yeasts, highlighting the importance of this permease for breeding and/or selection programs aimed at improving sluggish maltotriose fermentations.
Collapse
|
12
|
Stambuk BU, Alves SL, Hollatz C, Zastrow CR. Improvement of maltotriose fermentation by Saccharomyces cerevisiae. Lett Appl Microbiol 2006; 43:370-6. [PMID: 16965366 DOI: 10.1111/j.1472-765x.2006.01982.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To enhance the fermentation of maltotriose by industrial Saccharomyces cerevisiae strains. METHODS AND RESULTS The capability to ferment maltotriose by an industrial yeast strain that uses this sugar aerobically was tested in shake flasks containing rich medium. While the presence of maltose in the medium did not improve maltotriose fermentation, enhanced and constitutive expression of the AGT1 permease not only increased the uptake of maltotriose, but allowed efficient maltotriose fermentation by this strain. Supplementation of the growth medium with 20 mmol magnesium l(-1) also increased maltotriose fermentation. CONCLUSIONS Over expression of the AGT1 permease and magnesium supplementation improved maltotriose fermentation by an industrial yeast strain that respired but did not ferment this sugar. SIGNIFICANCE AND IMPACT OF THE STUDY This work contributes to the elucidation of the roles of the AGT1 permease and nutrients in the fermentation of all sugars present in starch hydrolysates, a highly desirable trait for several industrial yeasts.
Collapse
Affiliation(s)
- B U Stambuk
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
| | | | | | | |
Collapse
|
13
|
Current awareness on yeast. Yeast 2003; 20:555-62. [PMID: 12749362 DOI: 10.1002/yea.944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|