1
|
Interaction energy profile for diphenyl diselenide in complex with δ-aminolevulinic acid dehydratase enzyme using quantum calculations and a molecular fragmentation method. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.comtox.2018.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
2
|
Ribaudo G, Bellanda M, Menegazzo I, Wolters LP, Bortoli M, Ferrer-Sueta G, Zagotto G, Orian L. Mechanistic Insight into the Oxidation of Organic Phenylselenides by H 2 O 2. Chemistry 2017; 23:2405-2422. [PMID: 27935210 DOI: 10.1002/chem.201604915] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Indexed: 12/24/2022]
Abstract
The oxidation of organic phenylselenides by H2 O2 is investigated in model compounds, namely, n-butyl phenyl selenide (PhSe(nBu)), bis(phenylselanyl)methane (PhSeMeSePh), diphenyl diselenide (PhSeSePh), and 1,2-bis(phenylselanyl)ethane (PhSeEtSePh). Through a combined experimental (1 H and 77 Se NMR) and computational approach, we characterize the direct oxidation of monoselenide to selenoxide, the stepwise double oxidation of PhSeMeSePh that leads to different diastereomeric diselenoxides, the complete oxidation of the diphenyldiselenide that leads to selenium-selenium bond cleavage, and the subsequent formation of the phenylseleninic product. The oxidation of PhSeEtSePh also results in the formation of phenylseleninic acid along with 1-(vinylseleninyl)benzene, which is derived from a side elimination reaction. The evidence of a direct mechanism, in addition to an autocatalytic mechanism that emerges from kinetic studies, is discussed. By considering our observations of diselenides with chalcogen atoms that are separated by alkyl spacers of different length, a rationale for the advantage of diselenide versus monoselenide catalysts is presented.
Collapse
Affiliation(s)
- Giovanni Ribaudo
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Massimo Bellanda
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Ileana Menegazzo
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Lando P Wolters
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Marco Bortoli
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Gerardo Ferrer-Sueta
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la Repúbica, Igua 4225, Montevideo, Uruguay
| | - Giuseppe Zagotto
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
3
|
Torsello M, Pimenta AC, Wolters LP, Moreira IS, Orian L, Polimeno A. General AMBER Force Field Parameters for Diphenyl Diselenides and Diphenyl Ditellurides. J Phys Chem A 2016; 120:4389-400. [DOI: 10.1021/acs.jpca.6b02250] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mauro Torsello
- Dipartimento
di Scienze Chimiche, Università degli Studi di Padova, Via
Marzolo 1, 35131 Padova, Italy
| | - Antonio C. Pimenta
- CNC−Center for Neuroscience
and Cell Biology, Universidade de Coimbra, Rua Larga, FMUC, Polo I, 1°andar, 3004-517 Coimbra, Portugal
| | - Lando P. Wolters
- Dipartimento
di Scienze Chimiche, Università degli Studi di Padova, Via
Marzolo 1, 35131 Padova, Italy
| | - Irina S. Moreira
- CNC−Center for Neuroscience
and Cell Biology, Universidade de Coimbra, Rua Larga, FMUC, Polo I, 1°andar, 3004-517 Coimbra, Portugal
| | - Laura Orian
- Dipartimento
di Scienze Chimiche, Università degli Studi di Padova, Via
Marzolo 1, 35131 Padova, Italy
| | - Antonino Polimeno
- Dipartimento
di Scienze Chimiche, Università degli Studi di Padova, Via
Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
4
|
Zaccaria F, Wolters LP, Fonseca Guerra C, Orian L. Insights on selenium and tellurium diaryldichalcogenides: A benchmark DFT study. J Comput Chem 2016; 37:1672-80. [DOI: 10.1002/jcc.24383] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/17/2016] [Accepted: 03/17/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Francesco Zaccaria
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling; Vrije Universiteit Amsterdam; De Boelelaan 1083 Amsterdam 1081 HV the Netherlands
| | - Lando P. Wolters
- Dipartimento Di Scienze Chimiche; Università Studi Di Padova; via Marzolo 1 Padova 35129 Italy
| | - Célia Fonseca Guerra
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling; Vrije Universiteit Amsterdam; De Boelelaan 1083 Amsterdam 1081 HV the Netherlands
| | - Laura Orian
- Dipartimento Di Scienze Chimiche; Università Studi Di Padova; via Marzolo 1 Padova 35129 Italy
| |
Collapse
|
5
|
Omotayo TI, Akinyemi GS, Omololu PA, Ajayi BO, Akindahunsi AA, Rocha JBT, Kade IJ. Possible involvement of membrane lipids peroxidation and oxidation of catalytically essential thiols of the cerebral transmembrane sodium pump as component mechanisms of iron-mediated oxidative stress-linked dysfunction of the pump's activity. Redox Biol 2014; 4:234-41. [PMID: 25618580 PMCID: PMC4803792 DOI: 10.1016/j.redox.2014.12.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/21/2014] [Accepted: 12/22/2014] [Indexed: 11/20/2022] Open
Abstract
The precise molecular events defining the complex role of oxidative stress in the inactivation of the cerebral sodium pump in radical-induced neurodegenerative diseases is yet to be fully clarified and thus still open. Herein we investigated the modulation of the activity of the cerebral transmembrane electrogenic enzyme in Fe2+-mediated in vitro oxidative stress model. The results show that Fe2+ inhibited the transmembrane enzyme in a concentration dependent manner and this effect was accompanied by a biphasic generation of aldehydic product of lipid peroxidation. While dithiothreitol prevented both Fe2+ inhibitory effect on the pump and lipid peroxidation, vitamin E prevented only lipid peroxidation but not inhibition of the pump. Besides, malondialdehyde (MDA) inhibited the pump by a mechanism not related to oxidation of its critical thiols. Apparently, the low activity of the pump in degenerative diseases mediated by Fe2+ may involve complex multi-component mechanisms which may partly involve an initial oxidation of the critical thiols of the enzyme directly mediated by Fe2+ and during severe progression of such diseases; aldehydic products of lipid peroxidation such as MDA may further exacerbate this inhibitory effect by a mechanism that is likely not related to the oxidation of the catalytically essential thiols of the ouabain-sensitive cerebral electrogenic pump. Fe2+ evoked lipid peroxidation (LPO) and inhibition of sodium pump (SP) in rat brain. However, dithiothreitol prevented both Fe2+-mediated LPO and inhibition of SP. Conversely, vitamin E prevented only Fe2+-mediated LPO but not inhibition of SP. Thus Fe2+ mediated inactivation of SP likely by oxidizing the essential thiol on SP. However, malondialdehyde inhibited SP by a mechanism not related to thiol oxidation.
Collapse
Affiliation(s)
- T I Omotayo
- Department of Biochemistry, Federal University of Technology, Akure, Ondo State, Nigeria
| | - G S Akinyemi
- Department of Biochemistry, Federal University of Technology, Akure, Ondo State, Nigeria
| | - P A Omololu
- Department of Biochemistry, Federal University of Technology, Akure, Ondo State, Nigeria
| | - B O Ajayi
- Department of Biochemistry, Federal University of Technology, Akure, Ondo State, Nigeria
| | - A A Akindahunsi
- Department of Biochemistry, Federal University of Technology, Akure, Ondo State, Nigeria
| | - J B T Rocha
- Centro de Ciencias Naturais e Exatas, Programa Posgraduacao em Bioquimica Toxciologica, Universidade Federal de Santa Maria, RS, Brazil
| | - I J Kade
- Department of Biochemistry, Federal University of Technology, Akure, Ondo State, Nigeria.
| |
Collapse
|
6
|
de Oliveira IM, Degrandi TH, Jorge PM, Saffi J, Rosa RM, Guecheva TN, Henriques JAP. Dicholesteroyl diselenide: Cytotoxicity, genotoxicity and mutagenicity in the yeast Saccharomyces cerevisiae and in Chinese hamster lung fibroblasts. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 763:1-11. [DOI: 10.1016/j.mrgentox.2013.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 10/25/2013] [Accepted: 12/28/2013] [Indexed: 12/30/2022]
|
7
|
Ibrahim M, Hassan W, Meinerz DF, dos Santos M, V. Klimaczewski C, M. Deobald A, Costa MS, Nogueira CW, Barbosa NBV, Rocha JBT. Antioxidant properties of diorganoyl diselenides and ditellurides: modulation by organic aryl or naphthyl moiety. Mol Cell Biochem 2012; 371:97-104. [DOI: 10.1007/s11010-012-1426-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 08/03/2012] [Indexed: 01/22/2023]
|
8
|
Mercury toxicity on sodium pump and organoseleniums intervention: a paradox. J Biomed Biotechnol 2012; 2012:924549. [PMID: 22927724 PMCID: PMC3425867 DOI: 10.1155/2012/924549] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 07/01/2012] [Indexed: 12/21/2022] Open
Abstract
Mercury is an environmental poison, and the damage to living system is generally severe. The severity of mercury poisoning is consequent from the fact that it targets the thiol-containing enzymes, irreversibly oxidizing their critical thiol groups, consequently leading to an inactivation of the enzyme. The Na+/K+-ATPase is a sulfhydryl protein that is sensitive to Hg2+ assault. On the other hand, organoseleniums are a class of pharmacologically promising compounds with potent antioxidant effects. While Hg2+ oxidizes sulfhydryl groups of Na+/K+-ATPase under in vitro and in vivo conditions, the organoselenium compounds inhibit Na+/K+-ATPase in vitro but enhance its activities under in vivo conditions with concomitant increase in the level of endogenous thiols. Paradoxically, it appears that these two thiol oxidants can be used to counteract one another under in vivo conditions, and this hypothesis serves as the basis for this paper.
Collapse
|
9
|
de Souza Prestes A, Stefanello ST, Salman SM, Pazini AM, Schwab RS, Braga AL, de Vargas Barbosa NB, Rocha JBT. Antioxidant activity of β-selenoamines and their capacity to mimic different enzymes. Mol Cell Biochem 2012; 365:85-92. [PMID: 22311601 DOI: 10.1007/s11010-012-1246-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 01/14/2012] [Indexed: 11/25/2022]
Abstract
The antioxidant properties of organoselenium compounds have been extensively investigated because oxidative stress is a hallmark of a variety of chronic human diseases. Here, we reported the influence of substituent groups in the antioxidant activity of β-selenoamines. We have investigated whether they exhibited glutathione peroxidase-like (GPx-like) activity and whether they could be substrate of thioredoxin reductase (TrxR). In the DPPH assay, the β-selenium amines did not exhibit antioxidant activity. However, the β-selenium amines with p-methoxy and tosyl groups prevented the lipid peroxidation. The β-selenium amine compound with p-methoxy substituent group exhibited thiol-peroxidase-like activity (GPx-like activity) and was reduced by the hepatic TrxR. These results contribute to understand the influence of structural alteration of non-conventional selenium compounds as synthetic mimetic of antioxidant enzymes of mammalian organisms.
Collapse
Affiliation(s)
- Alessandro de Souza Prestes
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS CEP 97105-900, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Rocha JBT, Saraiva RA, Garcia SC, Gravina FS, Nogueira CW. Aminolevulinate dehydratase (δ-ALA-D) as marker protein of intoxication with metals and other pro-oxidant situations. Toxicol Res (Camb) 2012. [DOI: 10.1039/c2tx20014g] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
11
|
Saraiva RA, Bueno DC, Nogara PA, Rocha JBT. Molecular docking studies of disubstituted diaryl diselenides as mammalian δ-aminolevulinic acid dehydratase enzyme inhibitors. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:1012-1022. [PMID: 22852851 DOI: 10.1080/15287394.2012.697810] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
δ-Aminolevulinic acid dehydratase (δ-ALAD) is a metalloprotein that catalyzes porphobilinogen formation. This enzyme is sensitive to pro-oxidants and classically used as a biomarker of lead (Pb) intoxication. Diphenyl diselenide [(PhSe)₂] and analogs bis(4-chlorophenyl) diselenide [(pCl₃PhSe)₂], bis(4-methoxyphenyl)diselenide [(pCH₃OPhSe)₂], and bis[3-(trifluoromethy)phenyl] diselenide [(mCF₃PhSe)₂] inhibit mammalian δ-ALAD by oxidizing enzyme cysteinyl residues, which are involved in diselenide-induced toxicity. 2-Cysteinyl residues from δ-ALAD are believed to sequentially interact with (PhSe)₂. Thus this study utilized protein-ligand docking analyses to determine which cysteinyl residues might be involved in the inhibitory effect of (PhSe)₂ and analogs toward δ-ALAD. All diselenides that interact in a similar manner with the active site of δ-ALAD were examined. Docking simulations indicated an important role for π-π interactions involving Phe208 and cation-π interactions involving Lys199 and Arg209 residues with the aromatic ring of (PhSe)₂ and analogs. Based upon these interactions an approximation between Se atoms and -SH of Cys124, with distances ranging between 3.3 Å and 3.5 Å, was obtained. These data support our previous postulations regarding the mechanism underlying δ-ALAD oxidation mediated by (PhSe)₂ and analogs. Based on protein-ligand docking analyses, data indicated that -SH of Cys124 attacks one of the Se atoms of -SH of (PhSe)₂ releasing one PhSeH (selenophenol). Subsequently, the -SH of Cys132 attacks the sulfur atom of Cys124 (from the bond of E-S-Se-Ph indermediate), generating the second PhSe⁻, and the oxidized and inhibited δ-ALAD. In conclusion, AutoDock Vina 1.1.1 was a useful tool to search for diselenides inhibitors of δ-ALAD, and, most importantly, it provided insight into molecular mechanisms involved in enzyme inhibition.
Collapse
Affiliation(s)
- R A Saraiva
- Laboratório de Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário, Camobi, Santa Maria, RS, Brazil.
| | | | | | | |
Collapse
|
12
|
Chagas PM, Bortolatto CF, Wilhelm EA, Nogueira CW. High doses of 2,2'-dithienyl diselenide cause systemic toxicity in rats: an in vitro and in vivo study. J Appl Toxicol 2011; 33:480-7. [PMID: 22180340 DOI: 10.1002/jat.1777] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 10/21/2011] [Accepted: 10/23/2011] [Indexed: 11/09/2022]
Abstract
Organoselenium compounds have important pharmacological properties. However, these compounds can cause toxicity, typically related to oxidation of endogenous thiols. The aim of this study was to investigate whether 2,2'-dithienyl diselenide (DTDS) has potential toxicity in vitro and in vivo. Therefore, sulfhydryl-containing enzyme activities, δ-aminolevulinic acid dehydratase (δ-ALA-D) and Na(+) -K(+) -ATPase were used to predict DTDS toxicity in rat brain homogenate in vitro. In in vivo experiments, a DTDS administration (50 or 100 mg kg(-1) , p.o.) to rats was performed and toxicological parameters were determined. DTDS inhibited δ-ALA-D (IC50 2 µm) and Na(+) -K(+) -ATPase (IC50 17 µm) activities in vitro. The inhibitory effect of DTDS on δ-ALA-D and Na(+) -K(+) -ATPase activities was restored by dithiothreitol. DTDS (5-25 µm) elicited a thiol oxidase-like activity. In vivo, DTDS (50 and 100 mg kg(-1) ) caused systemic toxicity, evidenced by a decrease in water and food intakes and body weight gain, as well as the death of rats. DTDS at the dose of 100 mg kg(-1) increased plasma alanine and aspartate aminotransferase activities and decreased urea levels. At 50 and 100 mg kg(-1) , it increased lipid peroxidation levels. At the highest dose, DTDS inhibited δ-ALA-D activity. By contrast, Na(+) -K(+) -ATPase activity and antioxidant defense were not altered in the brains of rats exposed to DTDS. In conclusion, interaction with the cisteinyl residues seems to mediate the inhibitory effect of DTDS on sulfhydryl-containing enzymes in vitro. In addition, high oral doses of DTDS induce toxicity in rats.
Collapse
Affiliation(s)
- Pietro Maria Chagas
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | | | | | | |
Collapse
|
13
|
Toxicology and pharmacology of selenium: emphasis on synthetic organoselenium compounds. Arch Toxicol 2011; 85:1313-59. [DOI: 10.1007/s00204-011-0720-3] [Citation(s) in RCA: 330] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 05/18/2011] [Indexed: 02/07/2023]
|