1
|
Bhasker A, Veleri S. Fundamental origins of neural tube defects with a basis in genetics and nutrition. Exp Brain Res 2025; 243:79. [PMID: 40025180 DOI: 10.1007/s00221-025-07016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/30/2025] [Indexed: 03/04/2025]
Abstract
Neural tube defects (NTDs) are leading congenital malformations. Its global prevalence is one in 1000 pregnancies and it has high morbidity and mortality. It has multiple risk factors like genetic errors and environmental stressors like maternal malnutrition and in utero exposure to pollutants like chemicals. The genetic program determines neural tube development based on timely expression of many genes involved in developmental signaling pathways like BMP, PCP and SHH. BMP expression defines ectoderm. SOX represses BMP in ectoderm and convertes to the neuroectoderm. Subsequently, PCP molecules define the tissue patterning for convergent-extension, a critical step in neural tube genesis. Further, SHH sets spatial patterning of the neural tube. Nutrients are the essential major environmental input for embryogenesis. But it may also carry risk factors. Malnutrition, especially folate deficiency, during embryogenesis is a major cause for NTDs. Folate is integral in the One Carbon metabolic pathway. Its deficiency and error in the pathway are implicated in NTDs. Folate supplementation alone is insufficient to prevent NTDs. Thus, a comprehensive understanding of the various risk factors is necessary to strategize reduction of NTDs. We review the current knowledge of various risk factors, like genetic, metabolic, nutritional, and drugs causing NTDs and discuss the steps required to identify them in the early embryogenesis to avoid NTDs.
Collapse
Affiliation(s)
- Anjusha Bhasker
- Drug Safety Division, ICMR-National Institute of Nutrition, Department of Health Research, Ministry of Health & Family Welfare, Govt. of India, Hyderabad, 500007, India
| | - Shobi Veleri
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Zhang L, Li D, Liu Y, Zhang X, Wei K, Zhao X, Ma H, Niu B, Cao R, Wang X. Cycloleucine induces neural tube defects by reducing Pax3 expression and impairing the balance of proliferation and apoptosis in early neurulation. Neurochem Int 2024; 180:105861. [PMID: 39307459 DOI: 10.1016/j.neuint.2024.105861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
S-adenosylmethionine (SAM) plays a critical role in the development of neural tube defects (NTDs). Studies have shown that the paired box 3 (Pax3) gene is involved in neural tube closure. However, the exact mechanism between Pax3 and NTDs induced by SAM deficiency remains unclear. Here, The NTD mouse model was induced using cycloleucine (CL), an inhibitor of SAM biosynthesis, to determine the effect of Pax3 on NTDs. The effect of CL on NTD occurrence was assessed by 5-ethynyl-2'-deoxyuridine (EdU) staining, immunohistochemistry, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), and Western blot in NTD embryonic brain tissues and immortalized hippocampal neuron cells (HT-22). A high incidence of NTDs was observed when CL was administered at a dose of 200 mg/kg body weight. The levels of SAM and Pax3 were significantly reduced in NTD embryonic brain tissues and HT-22 cells after CL exposure. Decreased proliferation and excessive apoptosis were observed in neuroepithelial cells of NTD embryos and HT-22 cells under SAM deficiency, but these effects were reversed by overexpression of Pax3. These results suggest that decreased expression of Pax3 impairs the dynamic balance between cellular proliferation and apoptosis, contributing to NTDs induced by SAM deficiency, which would provide new insights for clarifying the underlying mechanism of NTDs.
Collapse
Affiliation(s)
- Li Zhang
- Department of Hepatobiliary and Pancreatic Surgery and Liver Transplant Center, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China; Institute of Liver Diseases and Organ Transplantation, Shanxi Medical University, Taiyuan, Shanxi, China; Department of Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Dandan Li
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yurong Liu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaona Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Kaixin Wei
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaorong Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Huijing Ma
- Department of Obstetrics, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Bo Niu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China; Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Rui Cao
- Translational Medicine Research Centre, Shanxi Medical University, Taiyuan, China.
| | - Xiuwei Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China.
| |
Collapse
|
3
|
Wang X, Yu J, Yue H, Li S, Yang A, Zhu Z, Guan Z, Wang J. Inpp5e Regulated the Cilium-Related Genes Contributing to the Neural Tube Defects Under 5-Fluorouracil Exposure. Mol Neurobiol 2024; 61:6189-6199. [PMID: 38285286 DOI: 10.1007/s12035-024-03946-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/09/2024] [Indexed: 01/30/2024]
Abstract
Primary cilia are crucial for neurogenesis, and cilium-related genes are involved in the closure of neural tubes. Inositol polyphosphate-5-phosphatase (Inpp5e) was enriched in primary cilia and closely related to the occurrence of neural tube defects (NTDs). However, the role of Inpp5e in the development of NTDs is not well-known. To investigate whether Inpp5e gene is associated with the neural tube closure, we established a mouse model of NTDs by 5-fluorouracil (5-FU) exposure at gestational day 7.5 (GD7.5). The Inpp5e knockdown (Inpp5e-/-) mouse embryonic stem cells (mESCs) were produced by CRISPR/Cas9 system. The expressions of Inpp5e and other cilium-related genes including intraflagellar transport 80 (Ift80), McKusick-Kaufman syndrome (Mkks), and Kirsten rat sarcoma viral oncogene homolog (Kras) were determined, utilizing quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), western blot, PCR array, and immunofluorescence staining. The result showed that the incidence of NTDs was 37.10% (23 NTDs/62 total embryos) and significantly higher than that in the control group (P < 0.001). The neuroepithelial cells of neural tubes were obviously disarranged in NTD embryos. The mRNA and protein levels of Inpp5e, Ift80, Mkks, and Kras were significantly decreased in NTD embryonic brain tissues, compared to the control (P < 0.05). Knockdown of the Inpp5e (Inpp5e-/-) reduced the expressions of Ift80, Mkks, and Kras in mESCs. Furthermore, the levels of α-tubulin were significantly reduced in NTD embryonic neural tissue and Inpp5e-/- mESCs. These results suggested that maternal 5-FU exposure inhibited the expression of Inpp5e, which resulted in the downregulation of cilium-related genes (Ift80, Mkks, and Kras), leading to the impairment of primary cilium development, and ultimately disrupted the neural tube closure.
Collapse
Affiliation(s)
- Xiuwei Wang
- Laboratory of Translational Medicine, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Jialu Yu
- Laboratory of Translational Medicine, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Huixuan Yue
- Department of Pediatrics, Beijing Chaoyang Hospital of Capital Medical University, Beijing, 100020, China
| | - Shen Li
- Laboratory of Translational Medicine, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Aiyun Yang
- Laboratory of Translational Medicine, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Zhiqiang Zhu
- Laboratory of Translational Medicine, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Zhen Guan
- Laboratory of Translational Medicine, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Jianhua Wang
- Laboratory of Translational Medicine, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
4
|
Xiao H, Wang S, Tang Y, Li S, Jiang Y, Yang Y, Zhang Y, Han Y, Wu X, Zheng L, Li Y, Gao Y. Absence of terminal deoxynucleotidyl transferase expression in T-ALL/LBL accumulates chromosomal abnormalities to induce drug resistance. Int J Cancer 2023; 152:2383-2395. [PMID: 36757202 DOI: 10.1002/ijc.34465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023]
Abstract
T-acute lymphoblastic leukemia/lymphoma (T-ALL/LBL) is a malignant neoplasm of immature lymphoblasts. Terminal deoxynucleotidyl transferase (TDT) is a template-independent DNA polymerase that plays an essential role in generating diversity for immunoglobulin genes. T-ALL/LBL patients with TDT- have a worse prognosis. However, how TDT- promotes the disease progression of T-ALL/LBL remains unknown. Here we analyzed the prognosis of T-ALL/LBL patients in Shanghai Children's Medical Center (SCMC) and confirmed that TDT- patients had a higher rate of recurrence and remission failure and worse outcomes. Cellular experiments demonstrated that TDT was involved in DNA damage repair. TDT knockout delayed DNA repair, arrested the cell cycle and decreased apoptosis to induce the accumulation of chromosomal abnormalities and tolerance to abnormal karyotypes. Our study demonstrated that the poor outcomes in TDT- T-ALL/LBL might be due to the drug resistance (VP16 and MTX) induced by chromosomal abnormalities. Our findings revealed novel functions and mechanisms of TDT in T-ALL/LBL and supported that hematopoietic stem cell transplantation (HSCT) might be a better choice for these patients.
Collapse
Affiliation(s)
- Hui Xiao
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Siqi Wang
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Yuejia Tang
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Shanshan Li
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Yufeng Jiang
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Yi Yang
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Yinwen Zhang
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Yali Han
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Xiaoyu Wu
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Liang Zheng
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Yanxin Li
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Yijin Gao
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| |
Collapse
|
5
|
Wang X, Yu J, Wang J. Neural Tube Defects and Folate Deficiency: Is DNA Repair Defective? Int J Mol Sci 2023; 24:ijms24032220. [PMID: 36768542 PMCID: PMC9916799 DOI: 10.3390/ijms24032220] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Neural tube defects (NTDs) are complex congenital malformations resulting from failure of neural tube closure during embryogenesis, which is affected by the interaction of genetic and environmental factors. It is well known that folate deficiency increases the incidence of NTDs; however, the underlying mechanism remains unclear. Folate deficiency not only causes DNA hypomethylation, but also blocks the synthesis of 2'-deoxythymidine-5'-monophosphate (dTMP) and increases uracil misincorporation, resulting in genomic instabilities such as base mismatch, DNA breakage, and even chromosome aberration. DNA repair pathways are essential for ensuring normal DNA synthesis, genomic stability and integrity during embryonic neural development. Genomic instability or lack of DNA repair has been implicated in risk of development of NTDs. Here, we reviewed the relationship between folate deficiency, DNA repair pathways and NTDs so as to reveal the role and significance of DNA repair system in the pathogenesis of NTDs and better understand the pathogenesis of NTDs.
Collapse
|
6
|
Guan Z, Liang Y, Wang X, Zhu Z, Yang A, Li S, Yu J, Niu B, Wang J. Unraveling the Mechanisms of Clinical Drugs-Induced Neural Tube Defects Based on Network Pharmacology and Molecular Docking Analysis. Neurochem Res 2022; 47:3709-3722. [PMID: 35960485 DOI: 10.1007/s11064-022-03717-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/23/2022] [Accepted: 07/31/2022] [Indexed: 11/30/2022]
Abstract
Chemotherapeutic agents such as methotrexate (MTX), raltitrexed (RTX), 5-fluorouracil (5-FU), hydroxyurea (HU), and retinoic acid (RA), and valproic acid (VPA), an antiepileptic drug, all can cause malformations in the developing central nervous system (CNS), such as neural tube defects (NTDs). However, the common pathogenic mechanisms remain unclear. This study aimed to explore the mechanisms of NTDs caused by MTX, RTX, 5-FU, HU, RA, and VPA (MRFHRV), based on network pharmacology and molecular biology experiments. The MRFHRV targets were integrated with disease targets, to find the potential molecules related to MRFHRV-induced NTDs. Protein-protein interaction analysis and molecular docking were performed to analyze these common targets. Utilizing the kyoto encyclopedia of genes and genomes (KEGG) signaling pathways, we analyzed and searched the possible causative pathogenic mechanisms by crucial targets and the signaling pathway. Results showed that MRFHRV induced NTDs through several key targets (including TP53, MAPK1, HSP90AA1, ESR1, GRB2, HDAC1, EGFR, PIK3CA, RXRA, and FYN) and multiple signaling pathways such as PI3K/Akt pathway, suggesting that abnormal proliferation and differentiation could be critical pathogenic contributors in NTDs induced by MRFHRV. These results were further validated by CCK8 assay in mouse embryonic stem cells and GFAP staining in embryonic brain tissue. This study indicated that chemotherapeutic and antiepileptic agents induced NTDs might through predicted targets TP53, MAPK1, GRB2, HDAC1, EGFR, PIK3CA, RXRA, and FYN and multiple signaling pathways. More caution was required for the clinical administration for women with childbearing potential and pregnant.
Collapse
Affiliation(s)
- Zhen Guan
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yingchao Liang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Xiuwei Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Zhiqiang Zhu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Aiyun Yang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Shen Li
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Jialu Yu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Bo Niu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Jianhua Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing, 100020, China.
| |
Collapse
|
7
|
de Leeuw VC, van Nieuwland M, Bokkers BGH, Piersma AH. Culture Conditions Affect Chemical-Induced Developmental Toxicity In Vitro: The Case of Folic Acid, Methionine and Methotrexate in the Neural Embryonic Stem Cell Test. Altern Lab Anim 2020; 48:173-183. [PMID: 33034509 DOI: 10.1177/0261192920961963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In vitro tests are increasingly applied in chemical hazard assessment. Basic culture conditions may affect the outcome of in vitro tests and should be optimised to reduce false predictions. The neural embryonic stem cell test (ESTn) can predict early neurodevelopmental effects of chemicals, as it mimics the differentiation of stem cells towards the neuroectodermal lineage. Normal early neural differentiation depends crucially on folic acid (FA) and methionine (MET), both elements of the one-carbon (1C) cycle. The aim of this study was to assess the concentration-dependent influence of FA and MET on neural differentiation in the ESTn, and its consequences for assay sensitivity to methotrexate (MTX), a compound that interferes with the 1C cycle. Neural differentiation was inhibited below 0.007 mM and above 0.22 mM FA, while both stem cell viability (< 0.097 mM, > 1.52 mM) and neural differentiation (< 0.181 mM, > 1.35 mM) were affected when changing MET concentrations. A 10-day exposure to 13 nM MTX inhibited neural differentiation, especially in FA- and MET-deficient conditions. However, a 24-hour exposure to 39 nM MTX decreased neural cell and neural crest cell differentiation markers only when the concentration of FA in the medium was three times the standard concentration, which was expected to have a protective effect against MTX. These results show the importance of nutrient concentrations, exposure scenarios and timing of read-outs for cell differentiation and compound sensitivity in the ESTn. Caution should be taken when interpreting results from a single in vitro test, especially when extrapolating to effects on complex morphogenetic processes, like neural tube development.
Collapse
Affiliation(s)
- Victoria C de Leeuw
- Centre for Health Protection, National Institute for Public Health and the Environment (10206RIVM), Bilthoven, the Netherlands.,Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Marieke van Nieuwland
- Centre for Health Protection, National Institute for Public Health and the Environment (10206RIVM), Bilthoven, the Netherlands.,Radboudumc, Medical Faculty, Nijmegen, the Netherlands
| | - Bas G H Bokkers
- Centre for Health Protection, National Institute for Public Health and the Environment (10206RIVM), Bilthoven, the Netherlands.,Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (10206RIVM), Bilthoven, the Netherlands
| | - Aldert H Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (10206RIVM), Bilthoven, the Netherlands.,Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
8
|
Tian N, Lv DY, Yu J, Ma WY. Methotrexate impaired in-vivo matured mouse oocyte quality and the possible mechanisms. BMC Mol Cell Biol 2020; 21:51. [PMID: 32620073 PMCID: PMC7333412 DOI: 10.1186/s12860-020-00298-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 06/29/2020] [Indexed: 12/30/2022] Open
Abstract
Background Methotrexate (MTX) is an antifolate agent which is widely used in clinic for treating malignancies, rheumatoid arthritis and ectopic pregnancy. As reported, MTX has side effects on gastrointestinal system, nervous system and reproductive system, while its potential damages on oocyte quality are still unclear. It is known that oocyte quality is essential for healthy conception and the forthcoming embryo development. Thus, this work studied the effects of MTX on the oocyte quality. Results We established MTX model mice by single treatment with 5 mg/Kg MTX. Both morphological and molecular biology studies were performed to assess the in-vivo matured oocytes quality and to analyze the related mechanisms. The in-vivo matured oocytes from MTX-treated mice had poor in-vitro fertilization ability, and the resulting embryo formation rates and blastocyst quality were lower than the control group. We found that the in-vivo matured MTX-treated mouse oocytes displayed abnormal transcript expressions for genes of key enzymes in the folate cycles. MTX increased the rate of abnormal chromosome alignment and affected the regulation of chromosome separation via disrupting the spindle morphology and reducing the mRNA expressions of MAD2 and Sgo1. MTX reduced the DNA methylation levels in the in-vivo matured oocytes, and further studies showed that MTX altered the expressions of DNMT1 and DNMT 3b, and may also affect the levels of the methyl donor and its metabolite. Conclusions MTX impaired the in-vivo matured mouse oocyte quality by disturbing folate metabolism and affecting chromosome stability and methylation modification.
Collapse
Affiliation(s)
- Ning Tian
- Physical Science and Technical College, Shenyang Normal University, No. 253 Huanghe North Street, Huanggu District, Shenyang City, 110034, Liaoning Province, China.
| | - Dan-Yu Lv
- Department of Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, No. 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Ji Yu
- Physical Science and Technical College, Shenyang Normal University, No. 253 Huanghe North Street, Huanggu District, Shenyang City, 110034, Liaoning Province, China
| | - Wan-Yun Ma
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Haidian District, Beijing, 100084, China
| |
Collapse
|
9
|
Li B, Chang S, Liu C, Zhang M, Zhang L, Liang L, Li R, Wang X, Qin C, Zhang T, Niu B, Wang L. Low Maternal Dietary Folate Alters Retrotranspose by Methylation Regulation in Intrauterine Growth Retardation (IUGR) Fetuses in a Mouse Model. Med Sci Monit 2019; 25:3354-3365. [PMID: 31061382 PMCID: PMC6519683 DOI: 10.12659/msm.914292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background Maternal folate deficiency-mediated metabolic disruption is considered to be associated with the risk of intrauterine growth retardation (IUGR), but the exact mechanism remains unclear. The retrotransposon long interspersed nucleotide element-1 (LINE-1), which can induce birth defects via RNA intermediates, plays crucial roles during embryonic development. We investigated potential relationships between maternal folate and DNA methylation, and possible roles of LINE-1 in IUGR. Material/Methods The IUGR model was established by feeding female mice 1 of 3 diets – control diet (CD), folate-deficient diet for 2 weeks (FD2w), and folate-deficient diet for 4 weeks (FD4w) – prior to mating. Maternal serum folate, 5-methyltetrahydrofolate (5-MeTHF), S-adenosylmethionine (SAM), and S-adenosylhomocysteine (SAH) concentrations and global DNA methylation were assessed by LC/MS/MS method. LINE-1 methylation levels in fetuses were examined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. LINE-1 expression levels were validated by real-time PCR. Results Maternal folate deficiency caused plasma folate and 5-MeTHF levels to decrease and SAH level to increase in the FD4w group. Compared with the CD group, methylation levels of genomic DNA and LINE-1 decreased significantly in placenta and fetal tissues from the FD4w group. Expression of LINE-1 open reading frame 1 (ORF1) protein was elevated in fetal liver tissues. Furthermore, a strong correlation was found between methylation and disrupted one-carbon metabolism, implying that dietary folate plays important roles during embryogenesis. Conclusions Maternal dietary folate deficiency impaired one-carbon metabolism, leading to global DNA and LINE-1 hypomethylation, and then increased retrotransposition in fetuses, which can lead to IUGR.
Collapse
Affiliation(s)
- Baiyi Li
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Shaoyan Chang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Chi Liu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Min Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Lianfeng Zhang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Liang Liang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Rui Li
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Xiuwei Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Chuan Qin
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Bo Niu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Li Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland)
| |
Collapse
|
10
|
Developing a link between toxicants, claudins and neural tube defects. Reprod Toxicol 2018; 81:155-167. [DOI: 10.1016/j.reprotox.2018.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 02/06/2023]
|
11
|
Alata Jimenez N, Torres Pérez SA, Sánchez-Vásquez E, Fernandino JI, Strobl-Mazzulla PH. Folate deficiency prevents neural crest fate by disturbing the epigenetic Sox2 repression on the dorsal neural tube. Dev Biol 2018; 444 Suppl 1:S193-S201. [PMID: 30098999 DOI: 10.1016/j.ydbio.2018.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 12/22/2022]
Abstract
Folate deficiency has been known to contribute to neural tube and neural crest defects, but why these tissues are particularly affected, and which are the molecular mechanisms involved in those abnormalities are important human health questions that remain unanswered. Here we study the function of two of the main folate transporters, FolR1 and Rfc1, which are robustly expressed in these tissues. Folate is the precursor of S-adenosylmethionine, which is the main donor for DNA, protein and RNA methylation. Our results show that knockdown of FolR1 and/or Rfc1 reduced the abundance of histone H3 lysine and DNA methylation, two epigenetic modifications that play an important role during neural and neural crest development. Additionally, by knocking down folate transporter or pharmacologically inhibiting folate transport and metabolism, we observed ectopic Sox2 expression at the expense of neural crest markers in the dorsal neural tube. This is correlated with neural crest associated defects, with particular impact on orofacial formation. By using bisulfite sequencing, we show that this phenotype is consequence of reduced DNA methylation on the Sox2 locus at the dorsal neural tube, which can be rescued by the addition of folinic acid. Taken together, our in vivo results reveal the importance of folate as a source of the methyl groups necessary for the establishment of the correct epigenetic marks during neural and neural crest fate-restriction.
Collapse
Affiliation(s)
- Nagif Alata Jimenez
- Laboratory of Developmental Biology, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Int Marino 8200, Chascomús 7130, Argentina
| | - Sergio A Torres Pérez
- Laboratory of Developmental Biology, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Int Marino 8200, Chascomús 7130, Argentina
| | - Estefanía Sánchez-Vásquez
- Laboratory of Developmental Biology, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Int Marino 8200, Chascomús 7130, Argentina
| | - Juan I Fernandino
- Laboratory of Developmental Biology, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Int Marino 8200, Chascomús 7130, Argentina
| | - Pablo H Strobl-Mazzulla
- Laboratory of Developmental Biology, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Int Marino 8200, Chascomús 7130, Argentina.
| |
Collapse
|
12
|
Leung KY, Pai YJ, Chen Q, Santos C, Calvani E, Sudiwala S, Savery D, Ralser M, Gross SS, Copp AJ, Greene NDE. Partitioning of One-Carbon Units in Folate and Methionine Metabolism Is Essential for Neural Tube Closure. Cell Rep 2018; 21:1795-1808. [PMID: 29141214 PMCID: PMC5699646 DOI: 10.1016/j.celrep.2017.10.072] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/27/2017] [Accepted: 10/18/2017] [Indexed: 11/18/2022] Open
Abstract
Abnormal folate one-carbon metabolism (FOCM) is implicated in neural tube defects (NTDs), severe malformations of the nervous system. MTHFR mediates unidirectional transfer of methyl groups from the folate cycle to the methionine cycle and, therefore, represents a key nexus in partitioning one-carbon units between FOCM functional outputs. Methionine cycle inhibitors prevent neural tube closure in mouse embryos. Similarly, the inability to use glycine as a one-carbon donor to the folate cycle causes NTDs in glycine decarboxylase (Gldc)-deficient embryos. However, analysis of Mthfr-null mouse embryos shows that neither S-adenosylmethionine abundance nor neural tube closure depend on one-carbon units derived from embryonic or maternal folate cycles. Mthfr deletion or methionine treatment prevents NTDs in Gldc-null embryos by retention of one-carbon units within the folate cycle. Overall, neural tube closure depends on the activity of both the methionine and folate cycles, but transfer of one-carbon units between the cycles is not necessary. Inhibition of methionine cycle activity prevents neural tube closure, causing NTDs Loss of embryonic and maternal MTHFR activity does not prevent neural tube closure Glycine is a 1C donor to the folate cycle via the glycine cleavage system in the embryo Ablation of glycine cleavage causes NTDs, preventable by MTHFR inactivity or methionine
Collapse
Affiliation(s)
- Kit-Yi Leung
- Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Yun Jin Pai
- Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | - Chloe Santos
- Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Enrica Calvani
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sonia Sudiwala
- Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Dawn Savery
- Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Markus Ralser
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Steven S Gross
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | - Andrew J Copp
- Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Nicholas D E Greene
- Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK.
| |
Collapse
|
13
|
Wang X, Guan Z, Dong Y, Zhu Z, Wang J, Niu B. Inhibition of thymidylate synthase affects neural tube development in mice. Reprod Toxicol 2017; 76:17-25. [PMID: 29258758 DOI: 10.1016/j.reprotox.2017.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 06/26/2017] [Accepted: 12/14/2017] [Indexed: 11/28/2022]
Abstract
Thymidylate synthase (TYMS) is a key enzyme in the de novo synthesis of 2'-deoxythymidine-5'-monophosphate (dTMP) from 2'-deoxyuridine-5'-monophosphate (dUMP). Our aim was to investigate the role of dTMP dysmetabolism via inhibition of TYMS by an inhibitor, 5-fluorouracil (5-FU) in the occurrence of neural tube defects (NTDs). We found that a high incidence of NTDs occurred after treatment with 5-FU at 12.5 mg/kg body weight. TYMS activity was significantly inhibited with decreased dTMP and accumulation of dUMP after 5-FU injection. The proliferation of neuroepithelial cells were markedly inhibited in NTDs compared with control. Expressions of proliferating cell nuclear antigen and phosphohistone H3 were significantly decreased in NTDs, while phosphorylated replication protein A2, P53 and Caspase3 were significantly increased in NTDs compared with control. These results indicated that inhibition of TYMS affected the balance between proliferation and apoptosis in neuroepithelial cells, which might shed some lights on the mechanisms involved in NTDs.
Collapse
Affiliation(s)
- Xiuwei Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Zhen Guan
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yanting Dong
- The Respiratory Department, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Zhiqiang Zhu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jianhua Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China.
| | - Bo Niu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China; Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
14
|
Weng Q, Wang J, Wang J, Tan B, Wang J, Wang H, Zheng T, Lu QR, Yang B, He Q. Folate Metabolism Regulates Oligodendrocyte Survival and Differentiation by Modulating AMPKα Activity. Sci Rep 2017; 7:1705. [PMID: 28496133 PMCID: PMC5431811 DOI: 10.1038/s41598-017-01732-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 04/03/2017] [Indexed: 01/13/2023] Open
Abstract
Folate, an essential micronutrient, is a critical cofactor in one-carbon metabolism for many cellular pathways including DNA synthesis, metabolism and maintenance. Folate deficiency has been associated with an increased risk of neurological disease, cancer and cognitive dysfunction. Dihydrofolate reductase (DHFR) is a key enzyme to regulate folate metabolism, however folate/DHFR activity in oligodendrocyte development has not been fully understood. Here we show that folate enhances oligodendrocyte maturation both in vitro and in vivo, which is accompanied with upregulation of oligodendrocyte-specific DHFR expression. On the other hand, pharmacological inhibition of DHFR by methotrexate (MTX) causes severe defects in oligodendrocyte survival and differentiation, which could be reversed by folate intake. We further demonstrate that folate activates a metabolic regulator AMPKα to promote oligodendrocyte survival and differentiation. Moreover, activation of AMPKα partially rescues oligodendrocyte defects caused by DHFR-inhibition both in vitro and in vivo. Taken together, these findings identify a previously uncharacterized role of folate/DHFR/AMPKα axis in regulating oligodendrocyte survival and myelination during CNS development.
Collapse
Affiliation(s)
- Qinjie Weng
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Center for drug safety Evaluation and Research, Zhejiang University, Hangzhou, China
| | - Jiajia Wang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiaying Wang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Biqin Tan
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jing Wang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Haibo Wang
- Department of Pediatrics, Brain Tumor Center, Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Tao Zheng
- School of Preclinical and Forensic Medicine, West China Second Hospital, Sichuan University, Chengdu, China
| | - Q Richard Lu
- Department of Pediatrics, Brain Tumor Center, Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Bo Yang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China. .,Center for drug safety Evaluation and Research, Zhejiang University, Hangzhou, China.
| |
Collapse
|
15
|
Xu L, Wang L, Wang J, Zhu Z, Chang G, Guo Y, Tian X, Niu B. The effect of inhibiting glycinamide ribonucleotide formyl transferase on the development of neural tube in mice. Nutr Metab (Lond) 2016; 13:56. [PMID: 27555878 PMCID: PMC4994272 DOI: 10.1186/s12986-016-0114-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/09/2016] [Indexed: 11/10/2022] Open
Abstract
Background Folate deficiency is closely related to the development of neural tube defects (NTDs). However, the exact mechanism is not completely understood. This study aims to induce murine NTDs by inhibiting one of the folate metabolic pathways, de novo purine synthesis and preliminarily investigate the potential mechanisms. The key enzyme, glycinamide ribonucleotide formyl transferase (GARFT) was inhibited by a specific inhibitor, lometrexol (DDATHF) in the pregnant mice. Methods Pregnant mice were intraperitoneally injected with various doses of DDATHF on gestational day 7.5 and embryos were examined for the presence of NTDs on gestational day 11.5. GARFT activity and levels of ATP, GTP, dATP and dGTP were detected in embryonic brain tissue. Proliferation and apoptosis was analyzed by real-time quantitative polymerase chain reaction (RT-qPCR), immunohistochemical assay and western blotting. Results 40 mg kg−1 body weight (b/w) of DDATHF caused the highest incidence of NTDs (30.8 %) and therefore was selected as the optimal dose to establish murine NTDs. The GARFT activity and levels of ATP, GTP, dATP and dGTP in embryonic brain tissue were significantly decreased after DDATHF treatment. Furthermore, Levels of proliferation-related genes (Pcna, Foxg1 and Ptch1) were downregulated and apoptosis-related genes (Bax, Casp8 and Casp9) were upregulated. Expression of phosphohistone H3 was significantly decreased while expression of cleaved caspase-3 was greatly increased. Conclusions Results indicate that DDATHF induced murine NTDs by disturbing purine metabolism and further led to abnormal proliferation and apoptosis. Electronic supplementary material The online version of this article (doi:10.1186/s12986-016-0114-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lin Xu
- Department of Biotechnology, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020 People's Republic of China
| | - Li Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001 People's Republic of China
| | - JianHua Wang
- Department of Biotechnology, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020 People's Republic of China
| | - ZhiQiang Zhu
- Department of Biotechnology, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020 People's Republic of China
| | - Ge Chang
- Department of Biotechnology, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020 People's Republic of China
| | - Ying Guo
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001 People's Republic of China
| | - XinLi Tian
- Department of Cardiovascular Disease, Chinese PLA General Hospital of Beijing Military Region, Beijing, 100020 People's Republic of China
| | - Bo Niu
- Department of Biotechnology, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020 People's Republic of China
| |
Collapse
|
16
|
Piao W, Guo J, Bao Y, Wang F, Zhang T, Huo J, Zhang K. Analysis of polymorphisms of genes associated with folate-mediated one-carbon metabolism and neural tube defects in Chinese Han Population. ACTA ACUST UNITED AC 2016; 106:232-9. [DOI: 10.1002/bdra.23478] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/29/2015] [Accepted: 11/08/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Wei Piao
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention; Key Laboratory of Trace Element Nutrition of National Health and Family Planning Commission of the People's Republic of China; Beijing China
| | - Jin Guo
- Beijing Municipal Key Laboratory of Child Development and Nutriomics; Capital Institute of Pediatrics; Chaoyang District Beijing China
| | - Yihua Bao
- Beijing Municipal Key Laboratory of Child Development and Nutriomics; Capital Institute of Pediatrics; Chaoyang District Beijing China
| | - Fang Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics; Capital Institute of Pediatrics; Chaoyang District Beijing China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics; Capital Institute of Pediatrics; Chaoyang District Beijing China
| | - Junsheng Huo
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention; Key Laboratory of Trace Element Nutrition of National Health and Family Planning Commission of the People's Republic of China; Beijing China
| | - Kunlin Zhang
- Key Laboratory of Mental Health, Institute of Psychology; Chinese Academy of Sciences; Beijing China
| |
Collapse
|
17
|
Hang XY, Shang AJ, Zhao QJ, Bai SC, Cheng C, Tao BZ, Wang LK, Liang S, Yin L. Association between chromosomal aberration of COX8C and tethered spinal cord syndrome: array-based comparative genomic hybridization analysis. Neural Regen Res 2016; 11:1333-8. [PMID: 27651783 PMCID: PMC5020834 DOI: 10.4103/1673-5374.189200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Copy number variations have been found in patients with neural tube abnormalities. In this study, we performed genome-wide screening using high-resolution array-based comparative genomic hybridization in three children with tethered spinal cord syndrome and two healthy parents. Of eight copy number variations, four were non-polymorphic. These non-polymorphic copy number variations were associated with Angelman and Prader-Willi syndromes, and microcephaly. Gene function enrichment analysis revealed that COX8C, a gene associated with metabolic disorders of the nervous system, was located in the copy number variation region of Patient 1. Our results indicate that array-based comparative genomic hybridization can be used to diagnose tethered spinal cord syndrome. Our results may help determine the pathogenesis of tethered spinal cord syndrome and prevent occurrence of this disease.
Collapse
|
18
|
The role of folate metabolism in orofacial development and clefting. Dev Biol 2015; 405:108-22. [PMID: 26144049 DOI: 10.1016/j.ydbio.2015.07.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/29/2015] [Accepted: 07/01/2015] [Indexed: 11/23/2022]
Abstract
Folate deficiency has been associated with numerous diseases and birth defects including orofacial defects. However, whether folate has a role in the face during early orofacial development has been unclear. The present study reveals that pharmacological and antisense oligonucleotide mediated inhibition of DHFR, an integral enzyme in the folate pathway, results in specific changes in the size and shape of the midface and embryonic mouth. Such defects are accompanied by a severe reduction in the muscle and cartilage jaw elements without significant change in neural crest pattern or global levels of methylation. We propose that the orofacial defects associated with DHFR deficient function are the result of decreased cell proliferation and increased cell death via DNA damage. In particular, localized apoptosis may also be depleting the cells of the face that express crucial genes for the differentiation of the jaw structures. Folate supplementation is widely known to reduce human risk for orofacial clefts. In the present study, we show that activating folate metabolism can reduce median oral clefts in the primary palate by increasing cell survival. Moreover, we demonstrate that a minor decrease in DHFR function exacerbates median facial clefts caused by RAR inhibition. This work suggests that folate deficiencies could be a major contributing factor to multifactorial orofacial defects.
Collapse
|
19
|
Wang X, Guan Z, Chen Y, Dong Y, Niu Y, Wang J, Zhang T, Niu B. Genomic DNA hypomethylation is associated with neural tube defects induced by methotrexate inhibition of folate metabolism. PLoS One 2015; 10:e0121869. [PMID: 25822193 PMCID: PMC4379001 DOI: 10.1371/journal.pone.0121869] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 02/16/2015] [Indexed: 11/18/2022] Open
Abstract
DNA methylation is thought to be involved in the etiology of neural tube defects (NTDs). However, the exact mechanism between DNA methylation and NTDs remains unclear. Herein, we investigated the change of methylation in mouse model of NTDs associated with folate dysmetabolism by use of ultraperformance liquid chromatography tandem mass spectrometry (UPLC/MS/MS), liquid chromatography-electrospray ionization tandem mass spectrometry (LC-MS/MS), microarray, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and Real time quantitative PCR. Results showed that NTD neural tube tissues had lower concentrations of 5-methyltetrahydrofolate (5-MeTHF, P = 0.005), 5-formyltetrahydrofolate (5-FoTHF, P = 0.040), S-adenosylmethionine (SAM, P = 0.004) and higher concentrations of folic acid (P = 0.041), homocysteine (Hcy, P = 0.006) and S-adenosylhomocysteine (SAH, P = 0.045) compared to control. Methylation levels of genomic DNA decreased significantly in the embryonic neural tube tissue of NTD samples. 132 differentially methylated regions (35 low methylated regions and 97 high methylated regions) were selected by microarray. Two genes (Siah1b, Prkx) in Wnt signal pathway demonstrated lower methylated regions (peak) and higher expression in NTDs (P<0.05; P<0.05). Results suggest that DNA hypomethylation was one of the possible epigenetic variations correlated with the occurrence of NTDs induced by folate dysmetabolism and that Siah1b, Prkx in Wnt pathway may be candidate genes for NTDs.
Collapse
Affiliation(s)
- Xiuwei Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Zhen Guan
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Yan Chen
- Department of Respiratory, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanting Dong
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Yuhu Niu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Jianhua Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
- * E-mail: (BN); (TZ)
| | - Bo Niu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
- * E-mail: (BN); (TZ)
| |
Collapse
|
20
|
Guan Z, Wang X, Dong Y, Xu L, Zhu Z, Wang J, Zhang T, Niu B. dNTP deficiency induced by HU via inhibiting ribonucleotide reductase affects neural tube development. Toxicology 2014; 328:142-51. [PMID: 25527867 DOI: 10.1016/j.tox.2014.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/12/2014] [Accepted: 12/01/2014] [Indexed: 12/22/2022]
Abstract
Exposure to environmental toxic chemicals in utero during the neural tube development period can cause developmental disorders. To evaluate the disruption of neural tube development programming, the murine neural tube defects (NTDs) model was induced by interrupting folate metabolism using methotrexate in our previous study. The present study aimed to examine the effects of dNTP deficiency induced by hydroxyurea (HU), a specific ribonucleotide reductase (RNR) inhibitor, during murine neural tube development. Pregnant C57BL/6J mice were intraperitoneally injected with various doses of HU on gestation day (GD) 7.5, and the embryos were checked on GD 11.5. RNR activity and deoxynucleoside triphosphate (dNTP) levels were measured in the optimal dose. Additionally, DNA damage was examined by comet analysis and terminal deoxynucleotidyl transferase mediated dUTP nick end-labeling (TUNEL) assay. Cellular behaviors in NTDs embryos were evaluated with phosphorylation of histone H3 (PH-3) and caspase-3 using immunohistochemistry and western blot analysis. The results showed that NTDs were observed mostly with HU treatment at an optimal dose of 225 mg/kg b/w. RNR activity was inhibited and dNTP levels were decreased in HU-treated embryos with NTDs. Additionally, increased DNA damage, decreased proliferation, and increased caspase-3 were significant in NTDs embryos compared to the controls. Results indicated that HU induced murine NTDs model by disturbing dNTP metabolism and further led to the abnormal cell balance between proliferation and apoptosis.
Collapse
Affiliation(s)
- Zhen Guan
- Department of Biotechnology, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Xiuwei Wang
- Department of Biotechnology, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Yanting Dong
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Lin Xu
- Department of Biotechnology, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Zhiqiang Zhu
- Department of Biotechnology, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Jianhua Wang
- Department of Biotechnology, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Ting Zhang
- Department of Biotechnology, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China.
| | - Bo Niu
- Department of Biotechnology, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China.
| |
Collapse
|
21
|
Dong Y, Wang X, Zhang J, Guan Z, Xu L, Wang J, Zhang T, Niu B. Raltitrexed's effect on the development of neural tube defects in mice is associated with DNA damage, apoptosis, and proliferation. Mol Cell Biochem 2014; 398:223-31. [PMID: 25245820 DOI: 10.1007/s11010-014-2222-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 09/15/2014] [Indexed: 12/13/2022]
Abstract
The causal metabolic pathway and the underlying mechanism between folate deficiency and neural tube defects (NTDs) remain obscure. Thymidylate (dTMP) is catalyzed by thymidylate synthase (TS) using the folate-derived one-carbon unit as the sole methyl donor. This study aims to examine the role of dTMP biosynthesis in the development of neural tube in mice by inhibition of TS via a specific inhibitor, raltitrexed (RTX). Pregnant mice were intraperitoneally injected with various doses of RTX on gestational day 7.5, and embryos were examined for the presence of NTDs on gestational day 11.5. TS activity and changes of dUMP and dTMP levels were measured following RTX treatment at the optimal dose. DNA damage was determined by detection of phosphorylated replication protein A2 (RPA2) and γ-H2AX in embryos with NTDs induced by RTX. Besides, apoptosis and proliferation were also analyzed in RTX-treated embryos with NTDs. We found that NTDs were highly occurred by the treatment of RTX at the optimal dose of 11.5 mg/kg b/w. RTX treatment significantly inhibited TS activity. Meanwhile, dTMP was decreased associated with the accumulation of dUMP in RTX-treated embryos. Phosphorylated RPA2 and γ-H2AX were significantly increased in RTX-treated embryos with NTDs compared to control. More apoptosis and decreased proliferation were also found in embryos with NTDs induced by RTX. These results indicate that impairment of dTMP biosynthesis caused by RTX led to the development of NTDs in mice. DNA damage and imbalance between apoptosis and proliferation may be potential mechanisms.
Collapse
Affiliation(s)
- Yanting Dong
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Wang X, Zhang T, Zhao X, Guan Z, Wang Z, Zhu Z, Xie Q, Wang J, Niu B. Quantification of folate metabolites in serum using ultraperformance liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 962:9-13. [PMID: 24878879 DOI: 10.1016/j.jchromb.2014.05.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 10/25/2022]
Abstract
Folate deficiency is considered a risk factor for many diseases such as cancer, congenital heart disease and neural tube defects (NTDs). There is a pressing need for more methods of detecting folate and its main metabolites in the human body. Here, we developed a simple, fast and sensitive ultraperformance liquid chromatography tandem mass spectrometry (UPLC/MS/MS) method for the simultaneous quantifications of folate metabolites including folic acid, 5-methyltetrahydrofolate (5-MeTHF), 5-formyltetrahydrofolate (5-FoTHF), homocysteine (Hcy), S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH). The method was validated by determining the linearity (r(2)>0.998), sensitivity (limit of detection ranged from 0.05 to 0.200ng/mL), intra- and inter-day precision (both CV<6%) and recovery (each analyte was >90%). The total analysis time was 7min. Serum samples of NTD-affected pregnancies and controls from a NTD high-risk area in China were analyzed by this method, the NTD serum samples showed lower concentrations of 5-MeTHF (P<0.05) and 5-FoTHF (P<0.05), and higher concentrations of Hcy (P<0.05) and SAH (P<0.05) compared with serum samples from controls, consistent with a previous study. These results showed that the method is sensitive and reliable for simultaneous determination of six metabolites, which might indicate potential risk factors for NTDs, aid early diagnosis and provide more insights into the pathogenesis of NTDs.
Collapse
Affiliation(s)
- Xiuwei Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Xin Zhao
- Chines Academy of Inspection & Quarantine, Beijing 100023, China
| | - Zhen Guan
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Zhen Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Zhiqiang Zhu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Qiu Xie
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jianhua Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China.
| | - Bo Niu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China; Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|