1
|
Tragiannidis A, Gkampeta A, Vousvouki M, Vasileiou E, Groll AH. Antifungal agents and the kidney: pharmacokinetics, clinical nephrotoxicity, and interactions. Expert Opin Drug Saf 2021; 20:1061-1074. [PMID: 33896310 DOI: 10.1080/14740338.2021.1922667] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Invasive fungal infections continue to be important causes of morbidity and mortality in severely ill and immunocompromised patient populations. The past three decades have seen a considerable expansion in antifungal drug research, resulting in the clinical development of different classes of antifungal agents with different pharmacologic properties. Among drug-specific characteristics of antifungal agents, renal disposition and nephrotoxicity are important clinical considerations as many patients requiring antifungal therapy have compromised organ functions or are receiving other potentially nephrotoxic medications. AREAS COVERED The present article reviews incidence, severity and mechanisms of nephrotoxicity associated with antifungal agents used for prevention and treatment of invasive fungal diseases by discussing distribution, metabolism, elimination and drug-related adverse events in the context of safety data from phase II and III clinical studies. EXPERT OPINION Based on the available data amphotericin B deoxycholate has the highest relative potential for nephrotoxicity, followed by the lipid formulations of amphotericin B, and, to a much lesser extent and by indirect mechanisms, the antifungal triazoles.
Collapse
Affiliation(s)
- Athanasios Tragiannidis
- Childhood & Adolescent Hematology Oncology Unit, 2nd Pediatric Department, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA Hospital, Greece
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Pediatric Hematology/Oncology, University Children's Hospital Münster, Münster, Germany
| | - Anastasia Gkampeta
- Childhood & Adolescent Hematology Oncology Unit, 2nd Pediatric Department, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA Hospital, Greece
| | - Maria Vousvouki
- Childhood & Adolescent Hematology Oncology Unit, 2nd Pediatric Department, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA Hospital, Greece
| | - Eleni Vasileiou
- Childhood & Adolescent Hematology Oncology Unit, 2nd Pediatric Department, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA Hospital, Greece
| | - Andreas H Groll
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Pediatric Hematology/Oncology, University Children's Hospital Münster, Münster, Germany
| |
Collapse
|
2
|
Alenazi SA, Elmorsy E, Al-Ghafari A, El-Husseini A. Effect of amphotericin B-deoxycholate (Fungizone) on the mitochondria of Wistar rats' renal proximal tubules cells. J Appl Toxicol 2021; 41:1620-1633. [PMID: 33740284 DOI: 10.1002/jat.4151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 01/02/2023]
Abstract
Amphotericin B-deoxycholate (Fungizone [FZ]) is a widely used potent antimycotic drug in spite of its nephrotoxic effect via different mechanisms. The effect of FZ on renal cell bioenergetics is not clear. The current study evaluated the effect of FZ on the bioenergetics of albino rats' isolated renal proximal tubule cells (PTCs). The cytotoxic effect of FZ on the isolated renal cells was assessed by MTT and lactate dehydrogenase (LDH) assays. The effect of FZ on the PTCs uptake (OAT1 and OCT2) and efflux (P-gp and MRP2) transporters was evaluated. Then, the effect of FZ on mitochondria was assessed by studying complexes I-IV activities, lactate assay, oxygen consumption rates (OCR), and western blotting for all mitochondrial complexes. Moreover, the effect of FZ on mitochondrial membrane fluidity (MMF) and fatty acids composition was evaluated. Additionally, the protective effect of coenzyme q10 was studied. Outcomes showed that FZ was cytotoxic to the PTCs in a concentration and time-dependent patterns. FZ significantly inhibited the studied uptake and efflux tubular transporters with inhibition of the mitochondrial complexes activities and parallel increase in lactate production and decrease in OCRs. Finally, FZ significantly reduced the expression of all mitochondrial complexes in addition to significant increase in MMF and MMFA concentration. Coenzyme Q10 was found to significantly decrease FZ-induced cytotoxicity and transporters impairment in the PTC. FZ significantly inhibits bioenergetics of PTC, which may stimulate the cascade of cell death and clinical nephrotoxicity.
Collapse
Affiliation(s)
- Shehab Ahmed Alenazi
- Department of Pediatrics, Faculty of Medicine, Northern Border University, Arar, Kingdom of Saudi Arabia
| | - Ekramy Elmorsy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Department of Pathology, Faculty of Medicine, Northern Border University, Arar, Kingdom of Saudi Arabia
| | - Ayat Al-Ghafari
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Amr El-Husseini
- Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
3
|
Aigner M, Lass-Flörl C. Encochleated Amphotericin B: Is the Oral Availability of Amphotericin B Finally Reached? J Fungi (Basel) 2020; 6:E66. [PMID: 32443486 PMCID: PMC7344640 DOI: 10.3390/jof6020066] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 01/13/2023] Open
Abstract
As the oldest and for many decades the only available agent for the treatment of life-threatening invasive fungal diseases, amphotericin B (AmB) is known for its broad-spectrum fungicidal activity against a wide range of yeasts and molds. However, the main drawback of the present formulations remains its toxicity, the limited use to intravenous administration, and the higher costs associated with the better tolerated lipid formulations. The novel nanoparticle-based encochleated AmB (CAmB) formulation encapsulates, protects, and delivers its cargo molecule AmB in the interior of a calcium-phospholipid anhydrous crystal. Protecting AmB from harsh environmental conditions and gastrointestinal degradation, CAmB offers oral availability in conjunction with reduced toxicity. Matinas BioPharma, Bedminster, NJ is on the way to develop CAmB named MAT2203, currently undergoing Phase II clinical trials.
Collapse
Affiliation(s)
- Maria Aigner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstraße 41, A-6020 Innsbruck, Austria;
| | | |
Collapse
|
4
|
Faustino C, Pinheiro L. Lipid Systems for the Delivery of Amphotericin B in Antifungal Therapy. Pharmaceutics 2020; 12:pharmaceutics12010029. [PMID: 31906268 PMCID: PMC7023008 DOI: 10.3390/pharmaceutics12010029] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/31/2022] Open
Abstract
Amphotericin B (AmB), a broad-spectrum polyene antibiotic in the clinic for more than fifty years, remains the gold standard in the treatment of life-threatening invasive fungal infections and visceral leishmaniasis. Due to its poor water solubility and membrane permeability, AmB is conventionally formulated with deoxycholate as a micellar suspension for intravenous administration, but severe infusion-related side effects and nephrotoxicity hamper its therapeutic potential. Lipid-based formulations, such as liposomal AmB, have been developed which significantly reduce the toxic side effects of the drug. However, their high cost and the need for parenteral administration limit their widespread use. Therefore, delivery systems that can retain or even enhance antimicrobial efficacy while simultaneously reducing AmB adverse events are an active area of research. Among those, lipid systems have been extensively investigated due to the high affinity of AmB for binding lipids. The development of a safe and cost-effective oral formulation able to improve drug accessibility would be a major breakthrough, and several lipid systems for the oral delivery of AmB are currently under development. This review summarizes recent advances in lipid-based systems for targeted delivery of AmB focusing on non-parenteral nanoparticulate formulations mainly investigated over the last five years and highlighting those that are currently in clinical trials.
Collapse
Affiliation(s)
| | - Lídia Pinheiro
- Correspondence: ; Tel.: +351-21-7946-400; Fax: +351-21-7946-470
| |
Collapse
|
5
|
Gola J, Strzałka-Mrozik B, Wieczorek E, Kruszniewska-Rajs C, Adamska J, Gagoś M, Czernel G, Mazurek U. Amphotericin B-copper (II) complex alters transcriptional activity of genes encoding transforming growth factor-beta family members and related proteins in renal cells. Pharmacol Rep 2017; 69:1308-1314. [PMID: 29128814 DOI: 10.1016/j.pharep.2017.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 05/18/2017] [Accepted: 05/23/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Several chemical modifications have been developed to overcome the toxicity of amphotericin B (AmB). Oxidized forms of AmB (AmB-ox), which may occur in patient's circulation during therapy, are as toxic as AmB. Complexes with copper (II) ions (AmB-Cu2+) have been reported to be less toxic to human cells. Previous studies showed that AmB changed the expression of transforming growth factor-beta (TGF-β). Therefore, the objective of this study was to investigate the influence of AmB and its modified forms on the expression of genes encoding for TGF-β family members and related proteins in renal cells. METHODS Human renal proximal tubule cells (RPTEC) were treated with AmB-Cu2+, AmB, or the oxidized form AmB-ox. The expression of TGF-β family members and related genes was determined using oligonucleotide microarrays. TGF-β1 protein level was determined using ELISA method. The mRNA level of TGF-β isoforms, TGF-β receptors and differentiating genes was evaluated by real-time RT-qPCR. RESULTS AmB-Cu2+ increased the mRNA levels of TGF-β1 and TGF-β2 isoforms and two genes encoding receptors: TGFBR1 and TGFBR2. TGF-β1 protein level in culture medium was not increased after stimulation with AmB-Cu2+. Microarray analysis revealed changes in both pro-fibrotic and anti-fibrotic genes. CONCLUSIONS These results suggest that AmB-Cu2+ may induce repair mechanisms in renal proximal tubule cells via changes in the expression of genes involved in intracellular signaling.
Collapse
Affiliation(s)
- Joanna Gola
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland.
| | - Barbara Strzałka-Mrozik
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Ewa Wieczorek
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Celina Kruszniewska-Rajs
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Jolanta Adamska
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Mariusz Gagoś
- Department of Cell Biology, Institute of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Grzegorz Czernel
- Department of Biophysics, University of Life Sciences in Lublin, Lublin, Poland
| | - Urszula Mazurek
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| |
Collapse
|
6
|
Gola J, Strzałka-Mrozik B, Kruszniewska-Rajs C, Janiszewski A, Skowronek B, Gagoś M, Czernel G, Mazurek U. A new form of amphotericin B - the complex with copper (II) ions - downregulates sTNFR1 shedding and changes the activity of genes involved in TNF-induced pathways: AmB-Cu 2+ downregulates sTNFR1 shedding and changes the activity of genes involved in TNF-induced pathways. Pharmacol Rep 2016; 69:22-28. [PMID: 27755992 DOI: 10.1016/j.pharep.2016.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/02/2016] [Accepted: 09/05/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND A new form of amphotericin B (AmB)- complex with copper (II) ions (AmB-Cu2+) - is less toxic to human renal cells. Cytokines, including Tumor Necrosis Factor (TNF), are responsible for nephrotoxicity observed in patients treated with AmB. Another problem during therapy is the occurrence of oxidized forms of AmB (AmB-ox) in patients' circulation. To elucidate the molecular mechanism responsible for the reduction of the toxicity of AmB-Cu2+, we evaluated the expression of genes encoding TNF and its receptors alongside encoding proteins involved in TNF-induced signalization. METHODS Renal cells (RPTECs) were treated with AmB, AmB-Cu2+ or AmB-ox. The expression of TNF and its receptors was evaluated by ELISA tests and real-time RT-qPCR. The expression of TNF-related genes was appointed using oligonucleotide microarrays. RESULTS Only sTNFR1 was detected, and its level was lower in AmB-Cu2+- and AmB-ox-treated cells. TNFR1 mRNA was downregulated in AmB-ox, while TNFR2 mRNA was upregulated in AmB and AmB-Cu2+. Several changes in the expression of TNF-related genes coincided with changes in the expression of TNF receptors. CONCLUSIONS The lower toxicity of AmB-Cu2+ could result from the changes in the expression of TNF receptors, which coincided with the changes in the expression of genes encoding proteins involved in TNF-induced pathways. This situation might subsequently result in a changes in intracellular signalization and influence the toxicity of tested forms of AmB on renal cells.
Collapse
Affiliation(s)
- Joanna Gola
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland.
| | - Barbara Strzałka-Mrozik
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Celina Kruszniewska-Rajs
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Adrian Janiszewski
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Bartłomiej Skowronek
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Mariusz Gagoś
- Department of Cell Biology, Institute of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Grzegorz Czernel
- Department of Biophysics, University of Life Sciences in Lublin, Lublin, Poland
| | - Urszula Mazurek
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
7
|
Schlottfeldt FDS, Fernandes SM, Martins DM, Cordeiro P, Fonseca CDD, Watanabe M, Vattimo MDFF. Prevention of amphotericin B nephrotoxicity through use of phytotherapeutic medication. Rev Esc Enferm USP 2015; 49 Spec No:74-9. [PMID: 26761695 DOI: 10.1590/s0080-623420150000700011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/31/2015] [Indexed: 11/22/2022] Open
Abstract
Objective To evaluate the effect of diosmin and hesperidin flavonoids in the prevention of amphotericin B nephrotoxicity, through an experimental model on rats. Method Adult, male Wistar rats were distributed into the following groups: saline; diosmin hesperidin (animals that received 50 mg/kg of diosmin hesperidin, drinking water, for ten days); amphotericin B (animals that received 15 mg/kg/day of amphotericin B through intraperitoneal treatment for five days); amphotericin B+diosmin hesperidin. Renal function, fractional excretion of sodium; potassium and magnesium and oxidative metabolites were evaluated. Results Treatment with amphotericin B reduced renal function, as shown by the clearance of creatinine, increased tubular function markers and fractional excretion of sodium, potassium, magnesium and oxidative metabolites. Pre-treatment with diosmin hesperidin ameliorated clearance of creatinine and reduced tubular and oxidative injury. Conclusion Administration of amphotericin B resulted in reduction of renal function with tubular injury, and diosmin hesperidin showing an antioxidant protective effect on the kidneys.
Collapse
Affiliation(s)
| | | | | | | | | | - Mirian Watanabe
- Escola de Enfermagem, Universidade de São Paulo, São Paulo, SP, Brasil
| | | |
Collapse
|