1
|
Wang W, Huang Z, Huang Y, Zhang X, Huang J, Cui Y, Yue X, Ma C, Fu F, Wang W, Wu C, Pan X. Pulmonary delivery nanomedicines towards circumventing physiological barriers: Strategies and characterization approaches. Adv Drug Deliv Rev 2022; 185:114309. [PMID: 35469997 DOI: 10.1016/j.addr.2022.114309] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/28/2022] [Accepted: 04/19/2022] [Indexed: 11/01/2022]
Abstract
Pulmonary delivery of nanomedicines is very promising in lung local disease treatments whereas several physiological barriers limit its application via the interaction with inhaled nanomedicines, namely bio-nano interactions. These bio-nano interactions may affect the pulmonary fate of nanomedicines and impede the distribution of nanomedicines in its targeted region, and subsequently undermine the therapeutic efficacy. Pulmonary diseases are under worse scenarios as the altered physiological barriers generally induce stronger bio-nano interactions. To mitigate the bio-nano interactions and regulate the pulmonary fate of nanomedicines, a number of manipulating strategies were established based on size control, surface modification, charge tuning and co-delivery of mucolytic agents. Visualized and non-visualized characterizations can be employed to validate the robustness of the proposed strategies. This review provides a guiding overview of the physiological barriers affecting the in vivo fate of inhaled nanomedicines, the manipulating strategies, and the validation methods, which will assist with the rational design and application of pulmonary nanomedicine.
Collapse
Affiliation(s)
- Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China.
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China.
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China.
| | - Xuejuan Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China.
| | - Jiayuan Huang
- School of Medicine, Sun Yat-Sen University, Shenzhen 518107, Guangdong, PR China.
| | - Yingtong Cui
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China.
| | - Xiao Yue
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China.
| | - Cheng Ma
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China.
| | - Fangqin Fu
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China.
| | - Wenhua Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China.
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China.
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China.
| |
Collapse
|
2
|
Yusuf A, Casey A. Surface modification of silver nanoparticle (AgNP) by liposomal encapsulation mitigates AgNP-induced inflammation. Toxicol In Vitro 2019; 61:104641. [PMID: 31493545 DOI: 10.1016/j.tiv.2019.104641] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/25/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022]
Abstract
Silver nanoparticles (AgNP) are widely used in a variety of consumable products as antibacterial to prevent or treat infection. Unfortunately, evidence exits that AgNP induces inflammation which can worsen with repeated human exposure. However, there is little or no research on how to mitigate these adverse effects due to AgNP induced-toxicity. Here, we investigated if surface modification of AgNP by liposomal encapsulation suppresses AgNP-mediated inflammatory responses in THP1 monocytes and THP1 differentiated macrophages (TDM). AgNP was encapsulated in a dipalmitoyl phosphatidyl choline- (DPPC)/cholesterol-based liposome by extrusion through a 100-nm polycarbonate membrane to form Lipo-AgNP. It was found as expected that AgNP induced significant release of IL-1β, IL-6, IL-8 and TNF-α in THP1 monocytes more than the basal level. Interestingly, release of these cytokines was suppressed by Lipo-AgNP. In TDMs, AgNP and Lipo-AgNP induced IL-8 release (p < .0001), but Lipo-AgNP maintained IL-8 release at levels significantly lower than that of AgNP (p < .01). However, both AgNP and Lipo-AgNP suppressed IL-1β and TNF-α release in LPS-stimulated THP1 monocytes and LPS-stimulated or unstimulated TDM respectively. We finally showed that Lipo-AgNP inhibits STAT-3 and this may be responsible for regulating the uncontrolled inflammation induced by AgNP likely mediated STAT-3 protein expression in LPS stimulated THP1 monocytes and TDMs, both LPS-stimulated and unstimulated. This data showed that Lipo-AgNP suppressed AgNP induced inflammation, making Lipo-AgNP particularly useful in treatment of bacteria induced inflammatory diseases and inflammatory cancers.
Collapse
Affiliation(s)
- Azeez Yusuf
- School of Physics, Technological University Dublin, Kevin Street, Dublin 8, Ireland; Nanolab Research Centre, FOCAS Research Institute, Technological University Dublin, Kevin Street, Dublin 8, Ireland.
| | - Alan Casey
- School of Physics, Technological University Dublin, Kevin Street, Dublin 8, Ireland; Nanolab Research Centre, FOCAS Research Institute, Technological University Dublin, Kevin Street, Dublin 8, Ireland
| |
Collapse
|
3
|
Sharma A, Gorey B, Casey A. In vitro comparative cytotoxicity study of aminated polystyrene, zinc oxide and silver nanoparticles on a cervical cancer cell line. Drug Chem Toxicol 2018; 42:9-23. [PMID: 29359584 DOI: 10.1080/01480545.2018.1424181] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nanoparticles use in nano-biotechnology applications have increased significantly with Aminated polystyrene amine (AmPs NP), Zinc oxide (ZnO NP), and Silver (Ag NP) nanoparticles utilized in wide variety of consumer products. This has presented a number of concerns due to their increased exposure risks and associated toxicity on living systems. Changes in the structural and physicochemical properties of nanoparticles can lead to changes in biological activities. This study investigates, compares, and contrasts the potential toxicity of AmPs, ZnO and Ag NPs on an in vitro model (HeLa cells) and assesses the associated mechanism for their corresponding cytotoxicity relative to the surface material. It was noted that NPs exposure attributed to the reduction in cell viability and high-level induction of oxidative stress. All three test particles were noted to induce ROS to varying degrees which is irrespective of the attached surface group. Cell cycle analysis indicated a G2/M phase cell arrest, with the corresponding reduction in G0/G1 and S phase cells resulting in caspase-mediated apoptotic cell death. These findings suggest that all three NPs resulted in the decrease in cell viability, increase intracellular ROS production, induce cell cycle arrest at the G2/M phase and finally result in cell death by caspase-mediated apoptosis, which is irrespective of their differences in physiochemical properties and attached surface groups.
Collapse
Affiliation(s)
- Akash Sharma
- a NANOLAB Research Centre , Focas Institute, Dublin Institute of Technology , Dublin 8 , Ireland.,b School of Physics, Clinical and Optometric Sciences , Dublin Institute of Technology , Dublin , Ireland
| | - Brian Gorey
- a NANOLAB Research Centre , Focas Institute, Dublin Institute of Technology , Dublin 8 , Ireland
| | - Alan Casey
- a NANOLAB Research Centre , Focas Institute, Dublin Institute of Technology , Dublin 8 , Ireland.,b School of Physics, Clinical and Optometric Sciences , Dublin Institute of Technology , Dublin , Ireland
| |
Collapse
|
4
|
He T, Long J, Li J, Liu L, Cao Y. Toxicity of ZnO nanoparticles (NPs) to A549 cells and A549 epithelium in vitro: Interactions with dipalmitoyl phosphatidylcholine (DPPC). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 56:233-240. [PMID: 29028602 DOI: 10.1016/j.etap.2017.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/03/2017] [Accepted: 10/06/2017] [Indexed: 05/27/2023]
Abstract
Once inhaled, nanoparticles (NPs) will first interact with lung surfactant system, which may influence the colloidal aspects of NPs and consequently the toxic potential of NPs to pulmonary cells. In this study, we investigated the effects of dipalmitoyl phosphatidylcholine (DPPC), the major component in lung surfactant, on stability and toxicity of ZnO NPs. The presence of DPPC increased the UV-vis spectra, hydrodynamic size, Zeta potential and dissolution rate of ZnO NPs, which indicates that DPPC might interact with NPs and affect the colloidal stability of NPs. Exposure to ZnO NPs induced cytotoxicity associated with increased intracellular Zn ions but not superoxide in A549 cells. In A549 epithelium model, exposure to ZnO NPs induced cytotoxicity and decreased the release of interleukin 6 (IL-6) without a significant effect on epithelial permeability rate. Co-exposure of A549 cells or A549 epithelium model to DPPC and ZnO NPs induced a higher release of lactate dehydrogenase (LDH) and interleukin-6 (IL-6) compared with the exposure of ZnO NPs alone. We concluded that the presence of DPPC could influence the colloidal stability of ZnO NPs and increase the damage of NPs to membrane probably due to the increased positive surface charge.
Collapse
Affiliation(s)
- Tong He
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Jimin Long
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Juan Li
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China.
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China; Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China.
| |
Collapse
|