1
|
Addai-Arhin S, Shino S, Uchida M, Ishibashi H, Arizono K, Tominaga N. Toxicity of nickel, copper, and selenium in medaka embryos (oryzias latipes): a comparative study. J Toxicol Sci 2025; 50:23-32. [PMID: 39779229 DOI: 10.2131/jts.50.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The indispensability of biometals nickel, copper, and selenium in pharmaceutical, agricultural, and other industrial applications, coupled with their release from mining processes, has made them potent environmental contaminants, especially when present in aquatic ecosystems at levels above the essential range. The toxicity of these biometals in fish embryogenesis, including their toxicity levels, was studied using medaka embryos. Test solutions (0.001-10 ppm) of the biometals, along with an isotonic solution as a control, were introduced into the embryos using a nanosecond pulsed electric field application. The exposed embryos were cultured at 25 ± 1°C and microscopically observed daily for 14 days in an isotonic solution. Developmental abnormalities and toxicity were observed during the 14-day observation period. All biometals caused some abnormalities in developing embryos at all concentrations. Major abnormalities included delayed development; deformities such as curvature of bones or spines; abnormal formation of the hearts, eyes, and circulatory systems; and mortality. The toxicity of the biometals was significantly different (p < 0.05) from that of the control. Gene expression analysis revealed that 4747, 1961, and 1952 genes were affected by copper, nickel, and selenium, respectively. Copper affected the highest number of genes and caused the highest toxicity. These results indicate that nickel, copper, and selenium can cause toxicity in developing fish embryos at concentrations ranging from 0.01 ppb to 10 ppm. Therefore, there is a need to constantly monitor the levels of these biometals, particularly in aquatic ecosystems, to preserve aquatic life.
Collapse
Affiliation(s)
- Sylvester Addai-Arhin
- Graduate School of Environmental and Symbiotic Sciences, Kumamoto Prefectural University
- Pharmaceutical Science Department, Faculty of Health Sciences, Kumasi Technical University, Ghana
| | - Seiya Shino
- Department of Creative engineering, National Institute of Technology, Ariake College
| | - Masaya Uchida
- Department of Creative engineering, National Institute of Technology, Ariake College
| | | | - Koji Arizono
- Faculty of Environmental and Symbiotic Sciences, Kumamoto Prefectural University
- Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Nobuaki Tominaga
- Department of Creative engineering, National Institute of Technology, Ariake College
| |
Collapse
|
2
|
Uchida M, Addai-Arhin S, Ishibashi H, Hirano M, Fukushima S, Ishibashi Y, Tominaga N, Arizono K. Developmental toxicity and transcriptome analysis of equine estrogens in developing medaka (Oryzias latipes) using nanosecond pulsed electric field incorporation. Comp Biochem Physiol C Toxicol Pharmacol 2023; 266:109547. [PMID: 36621632 DOI: 10.1016/j.cbpc.2023.109547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023]
Abstract
Equine estrogens (EQs) are steroidal hormones isolated from the urine of pregnant mares and are used in the formulation of human medications. This study initially investigated the embryonic developmental toxicity of equilin (Eq) and equilenin (Eqn) in medaka (Oryzias latipes). Malformations were observed in embryos exposed to nominal concentrations of 1 and 10 mg/L of Eq and Eqn. Delayed hatching was observed at 1 mg/L of Eq. To further investigate the molecular mechanism of developmental toxicity caused by Eq and Eqn, transcriptome and bioinformatics analyses were performed. Among 2016 and 3855 total differentially expressed genes (DEGs), 1117 DEGs overlapped between Eq. (55.4 % of total DEGs) and Eq. (29.0 % of total DEGs). Gene ontology indicated effects in terms related to blood circulation and cell junctions. Pathway analyses using DEGs revealed that both Eq and Eqn treatments at 10 mg/L affected various KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, such as neuroactive ligand-receptor interaction, mitogen-activated protein kinase signaling, retinol metabolism, and cytokine-cytokine receptor interaction. These results suggest that the disruption of these KEGG pathways is involved in the developmental toxicity of EQs in medaka embryos.
Collapse
Affiliation(s)
- Masaya Uchida
- Department of Creative Engineering, National Institute of Technology, Ariake College, 150 Higashi-Hagio, Omuta, Fukuoka 836-8585, Japan
| | - Sylvester Addai-Arhin
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, 3-1-100 Higashi-ku, Tsukide, Kumamoto 862-8502, Japan; Pharmaceutical Science Department, Faculty of Health Sciences, Kumasi Technical University, Post Office Box 854, Kumasi, Ghana
| | - Hiroshi Ishibashi
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Masashi Hirano
- Department of Bioscience, School of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto, Kumamoto 862-8652, Japan
| | - Satoshi Fukushima
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, 3-1-100 Higashi-ku, Tsukide, Kumamoto 862-8502, Japan; Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Univ. St. 1-1-1, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | - Yasuhiro Ishibashi
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, 3-1-100 Higashi-ku, Tsukide, Kumamoto 862-8502, Japan
| | - Nobuaki Tominaga
- Department of Creative Engineering, National Institute of Technology, Ariake College, 150 Higashi-Hagio, Omuta, Fukuoka 836-8585, Japan.
| | - Koji Arizono
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, 3-1-100 Higashi-ku, Tsukide, Kumamoto 862-8502, Japan; Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe, Chuo-ku, Kumamoto, Kumamoto 862-0973, Japan
| |
Collapse
|
3
|
Ishibashi H, Uchida M, Temma Y, Hirano M, Tominaga N, Arizono K. Choriogenin transcription in medaka embryos and larvae as an alternative model for screening estrogenic endocrine-disrupting chemicals. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 193:110324. [PMID: 32088548 DOI: 10.1016/j.ecoenv.2020.110324] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
This study assessed the transcription levels of estrogen-responsive genes, such as vitellogenins (Vtg1 and Vtg2), choriogenins (ChgL, ChgH, and ChgHm), cytochrome P450 aromatase (CYP19a1b), and ER subtypes (ERα, ERβ1, and ERβ2), in 7 days-post-fertilization (dpf) embryos and 9 and 12 dpf larvae of medaka (Oryzias latipes) exposed to estrogenic endocrine-disrupting chemicals (EDCs). The <5 h-post-fertilization embryos were exposed to EDCs such as 17β-estradiol (E2), p-n-nonylphenol (NP), and bisphenol A (BPA). In E2 (0.10-222 nM)-treated 7 dpf embryos and 9 or 12 dpf larvae, ChgL, ChgH, and ChgHm expression was up-regulated in a concentration-dependent manner. By contrast, interestingly, Vtg1 and Vtg2 expression was not induced in E2-treated 7 dpf embryos but was significantly induced in 9 and 12 dpf larvae, suggesting a developmental-stage-specific regulatory mechanism underlying Vtg expression. The maximum concentrations of NP (0.09-1.5 μM) and BPA (1.8-30 μM) up-regulated Chg expression in 9 or 12 dpf larvae, and the relative estrogenic potencies (REPs) of E2, NP, and BPA were 1, 2.1 × 10-4, and 1.0 × 10-5, respectively. Chg messenger RNA (mRNA) in medaka embryos and larvae can be used as a sensitive biomarker for screening potential estrogenic EDCs. Our assay system using embryos and larvae can be used as an in vivo alternative model because independent feeding stages (e.g., embryonic and early larval stages) are suitable alternatives.
Collapse
Affiliation(s)
- Hiroshi Ishibashi
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Masaya Uchida
- Department of Creative Engineering, National Institute of Technology, Ariake College, 150 Higashi-Hagio, Omuta, Fukuoka, 836-8585, Japan
| | - Yuki Temma
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Masashi Hirano
- Department of Biological and Chemical Systems Engineering, National Institute of Technology, Kumamoto College, 2627 Hirayama-shinmachi, Yatsushiro, Kumamoto, 866-8501, Japan
| | - Nobuaki Tominaga
- Department of Creative Engineering, National Institute of Technology, Ariake College, 150 Higashi-Hagio, Omuta, Fukuoka, 836-8585, Japan
| | - Koji Arizono
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, 3-1-100 Tsukide, Higashi-ku, Kumamoto, 862-8502, Japan.
| |
Collapse
|
4
|
Yamaguchi A, Uchida M, Ishibashi H, Hirano M, Ichikawa N, Arizono K, Koyama J, Tominaga N. Potential mechanisms underlying embryonic developmental toxicity caused by benzo[a]pyrene in Japanese medaka (Oryzias latipes). CHEMOSPHERE 2020; 242:125243. [PMID: 31704526 DOI: 10.1016/j.chemosphere.2019.125243] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), such as benzo[a]pyrene (BaP), are widely distributed in air, water, and sediments; however, limited data are available regarding their potential adverse effects on the early life stages of fish. In this study, we evaluated the embryonic teratogenicity and developmental toxicity of BaP in Japanese medaka (Oryzias latipes) using a nanosecond pulsed electric field (nsPEF) technique and predicted their molecular mechanisms via transcriptome analysis. The gas chromatography/mass spectrometry analyses revealed that the BaP was efficiently incorporated into the embryos by nsPEF treatment. The embryos incorporating BaP presented typical teratogenic and developmental effects, such as cardiovascular abnormalities, developmental abnormalities, and curvature of backbone. DNA microarray analysis revealed several unique upregulated genes, such as those involved in cardiovascular diseases, various cellular processes, and neural development. Furthermore, the gene set enrichment and network analyses found several genes and hub proteins involved in the developmental effects of BaP on the embryos. These findings suggest a potential mechanism of teratogenicity and developmental toxicity caused by exposure to BaP. The nsPEF and transcriptome analyses in combination can be effective for evaluating the potential effects of chemical substances on medaka embryos.
Collapse
Affiliation(s)
- Akemi Yamaguchi
- Department of Creative Engineering, National Institute of Technology, Ariake College, 150 Higashi-Hagio, Omuta, Fukuoka, 836-8585, Japan
| | - Masaya Uchida
- Department of Creative Engineering, National Institute of Technology, Ariake College, 150 Higashi-Hagio, Omuta, Fukuoka, 836-8585, Japan
| | - Hiroshi Ishibashi
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Masashi Hirano
- Department of Biological and Chemical Systems Engineering, National Institute of Technology, Kumamoto College, 2627 Hirayama-shinmachi, Yatsushiro, Kumamoto, 866-8501, Japan
| | - Nobuhiro Ichikawa
- College of Pharmaceutical Sciences, Department of Pharmacy, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Koji Arizono
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, 3-1-100 Higashi-ku, Tsukide, Kumamoto, 862-8502, Japan
| | - Jiro Koyama
- Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, Kagoshima, 890-0056, Japan
| | - Nobuaki Tominaga
- Department of Creative Engineering, National Institute of Technology, Ariake College, 150 Higashi-Hagio, Omuta, Fukuoka, 836-8585, Japan.
| |
Collapse
|
5
|
Tominaga N, Shino S, Uchida M, Ishibashi H, Iida M, Okobira T, Arizono K, Yoshida N, Arizono K. Effects of lithium on developmental toxicity, teratogenicity and transcriptome in medaka embryos. ACTA ACUST UNITED AC 2019. [DOI: 10.2131/fts.6.31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Nobuaki Tominaga
- Department of Creative Engineering, National Institute of Technology, Ariake College
| | - Seiya Shino
- Department of Creative Engineering, National Institute of Technology, Ariake College
- Graduate School of Biological Science, Nara Institute of Science and Technology
| | - Masaya Uchida
- Department of Creative Engineering, National Institute of Technology, Ariake College
| | | | - Midori Iida
- Computer Science and Systems Engineering, Kyushu Institute of Technology
| | - Tadashi Okobira
- Department of Creative Engineering, National Institute of Technology, Ariake College
| | - Kayla Arizono
- Nagasaki University Graduate School of Biomedical Sciences
| | | | - Koji Arizono
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto
| |
Collapse
|
6
|
Ishibashi H, Uchida M, Yoshimoto K, Imamura Y, Yamamoto R, Ikenaka Y, Kawai M, Ichikawa N, Takao Y, Tominaga N, Ishibashi Y, Arizono K. Occurrence and seasonal variation of equine estrogens, equilin and equilenin, in the river water of Japan: Implication with endocrine-disrupting potentials to Japanese medaka (Oryzias latipes). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 239:281-288. [PMID: 29660500 DOI: 10.1016/j.envpol.2018.04.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
In this study, we determined the concentration of equine estrogens, such as equilin (Eq) and equilenin (Eqn), in the river water collected from nine research stations in Hokkaido, Japan. The LC-MS/MS analysis revealed that Eq concentrations were 2.7 ± 6.7, 0.22 ± 0.12, and 1.2 ± 0.64 ng/L in Sep 2015, Feb 2016, and Jul 2016, respectively. Eqn had concentration levels similar to those of Eq. Comparison of the concentrations at nine research stations showed that seasonal variation was observed in the detected Eq and Eqn concentration levels. This study was the first to show the occurrences and seasonal variation of Eq and Eqn in the river water of Japan. We further investigated the reproductive and transgenerational effects of Eq in Japanese medaka (Oryzias latipes) exposed to 10, 100, and 1000 ng/L for 21 days and assessed the transcriptional profiles of the estrogen-responsive genes in the livers of both sexes. The reproduction assay demonstrated that 1000 ng/L of Eq adversely affected the reproduction (i.e. fecundity) in the F0 generation and that the hatching of F1 generation fertilized eggs was reduced in the 100 and 1000 ng/L treatment groups. Our qRT-PCR assay revealed that the mRNA expression levels of hepatic vitellogenin 1 and 2, choriogenin L and H, and estrogen receptor α were significantly up-regulated in males exposed to 100 and/or 1000 ng/L of Eq. In contrast, the transcriptional levels of several genes, such as pregnane X receptor and cytochrome P450 3A, were down-regulated in the livers of males after the 21-d exposure. These results suggest that Eq has endocrine-disrupting potential such as reproductive and transgenerational effects by the modulation of hepatic estrogen-responsive genes expression on medaka.
Collapse
Affiliation(s)
- Hiroshi Ishibashi
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Masaya Uchida
- Department of Creative Engineering, National Institute of Technology, Ariake College, 150 Higashi-Hagio, Omuta, Fukuoka, 836-8585, Japan
| | - Keisuke Yoshimoto
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, 3-1-100 Tsukide, Higashi-ku, Kumamoto, 862-8502, Japan
| | - Yuta Imamura
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, 3-1-100 Tsukide, Higashi-ku, Kumamoto, 862-8502, Japan
| | - Ryoko Yamamoto
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Yoshinori Ikenaka
- Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita ku, Sapporo, 060-0818, Japan
| | - Masahito Kawai
- Field Science Center for Northern Biosphere, Hokkaido University, Shizunaimisono 111, Shinhidaka-cho, Hokkaido, 056-0141, Japan
| | - Nobuhiro Ichikawa
- College of Pharmaceutical Sciences, Department of Pharmacy, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Yuji Takao
- Faculty of Environmental Studies, Nagasaki University, 1-14 Bunkyo, Nagasaki, 852-8521, Japan
| | - Nobuaki Tominaga
- Department of Creative Engineering, National Institute of Technology, Ariake College, 150 Higashi-Hagio, Omuta, Fukuoka, 836-8585, Japan
| | - Yasuhiro Ishibashi
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, 3-1-100 Tsukide, Higashi-ku, Kumamoto, 862-8502, Japan
| | - Koji Arizono
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, 3-1-100 Tsukide, Higashi-ku, Kumamoto, 862-8502, Japan.
| |
Collapse
|