1
|
Elmorsy EA, Saber S, Hamad RS, Abdel-Reheim MA, El-Kott AF, AlShehri MA, Morsy K, Negm S, Youssef ME. Mechanistic insights into carvedilol's potential protection against doxorubicin-induced cardiotoxicity. Eur J Pharm Sci 2024; 200:106849. [PMID: 38992452 DOI: 10.1016/j.ejps.2024.106849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Doxorubicin (DOX) is an anthracycline chemotherapy drug widely employed in the treatment of various cancers, known for its potent antineoplastic properties but often associated with dose-dependent cardiotoxicity, limiting its clinical use. This review explores the complex molecular details that determine the heart-protective effectiveness of carvedilol in relation to cardiotoxicity caused by DOX. The harmful effects of DOX on heart cells could include oxidative stress, DNA damage, iron imbalance, disruption of autophagy, calcium imbalance, apoptosis, dysregulation of topoisomerase 2-beta, arrhythmogenicity, and inflammatory responses. This review carefully reveals how carvedilol serves as a strong protective mechanism, strategically reducing each aspect of cardiac damage caused by DOX. Carvedilol's antioxidant capabilities involve neutralizing free radicals and adjusting crucial antioxidant enzymes. It skillfully manages iron balance, controls autophagy, and restores the calcium balance essential for cellular stability. Moreover, the anti-apoptotic effects of carvedilol are outlined through the adjustment of Bcl-2 family proteins and activation of the Akt signaling pathway. The medication also controls topoisomerase 2-beta and reduces the renin-angiotensin-aldosterone system, together offering a thorough defense against cardiotoxicity induced by DOX. These findings not only provide detailed understanding into the molecular mechanisms that coordinate heart protection by carvedilol but also offer considerable potential for the creation of targeted treatment strategies intended to relieve cardiotoxicity caused by chemotherapy.
Collapse
Affiliation(s)
- Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, 51452, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia; Central Laboratory, Theodor Bilharz Research Institute, Giza 12411, Egypt.
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, Faculty of Science, Damanhour University, Egypt
| | - Mohammed A AlShehri
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Kareem Morsy
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Sally Negm
- Department of Life Sciences, College of Science and Art Mahyel Aseer, King Khalid University, Abha 62529, Saudi Arabia
| | - Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| |
Collapse
|
2
|
Algieri C, Bernardini C, Oppedisano F, La Mantia D, Trombetti F, Palma E, Forni M, Mollace V, Romeo G, Troisio I, Nesci S. The Impairment of Cell Metabolism by Cardiovascular Toxicity of Doxorubicin Is Reversed by Bergamot Polyphenolic Fraction Treatment in Endothelial Cells. Int J Mol Sci 2022; 23:8977. [PMID: 36012238 PMCID: PMC9409165 DOI: 10.3390/ijms23168977] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
The beneficial effects of bergamot polyphenolic fraction (BPF) on the mitochondrial bioenergetics of porcine aortic endothelial cells (pAECs) were verified under the cardiotoxic action of doxorubicin (DOX). The cell viability of pAECs treated for 24 h with different concentrations of DOX was reduced by 50%, but the negative effect of DOX was reversed in the presence of increasing doses of BPF (100 µg/mL and 200 µg/mL BPF). An analysis of the protective effect of BPF on the toxic action of DOX was also carried out on cell respiration. We observed the inhibition of the mitochondrial activity at 10 µM DOX, which was not restored by 200 µg/mL BPF. Conversely, the decrease in basal respiration and ATP production caused by 0.5 or 1.0 µM DOX were improved in the presence of 100 or 200 µg/mL BPF, respectively. After 24 h of cell recovery with 100 µg/mL or 200 µg/mL BPF on pAECs treated with 0.5 µM or 1.0 µM DOX, respectively, the mitochondrial parameters of oxidative metabolism impaired by DOX were re-boosted.
Collapse
Affiliation(s)
- Cristina Algieri
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Debora La Mantia
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Monica Forni
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Giovanni Romeo
- Medical Genetics Unit, Sant’Orsola-Malpighi University Hospital, 40126 Bologna, Italy
| | - Ilaria Troisio
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| |
Collapse
|
3
|
Effect of a Low Dose of Carvedilol on Cyclophosphamide-Induced Urinary Toxicity in Rats—A Comparison with Mesna. Pharmaceuticals (Basel) 2021; 14:ph14121237. [PMID: 34959638 PMCID: PMC8708009 DOI: 10.3390/ph14121237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 01/28/2023] Open
Abstract
One of the major side effects of cyclophosphamide (CPX)—an alkylating anticancer drug that is still clinically used—is urotoxicity with hemorrhagic cystitis. The present study was designed to evaluate the ability of carvedilol to protect rats from cyclophosphamide-induced urotoxicity. Rats were injected intraperitoneally (i.p.) with CPX (200 mg/kg) and administered carvedilol (2 mg/kg) intragastrically a day before, at the day and a day after a single i.p. injection of CPX, with or without mesna (40, 80, and 80 mg/kg i.p. 20 min before, 4 h and 8 h after CPX administration, respectively). Pretreatment with carvedilol partly prevented the CPX-induced increase in urinary bladder and kidney index, and completely protects from CPX-evoked alterations in serum potassium and creatinine level, but did not prevent histological alterations in the urinary bladder and hematuria. However, carvedilol administration resulted in significant restoration of kidney glutathione (GSH) level and a decrease in kidney interleukin 1β (IL-1β) and plasma asymmetric dimethylarginine (ADMA) concentrations. Not only did mesna improve kidney function, but it also completely reversed histological abnormalities in bladders and prevented hematuria. In most cases, no significant interaction of carvedilol with mesna was observed, although the effect of both drugs together was better than mesna given alone regarding plasma ADMA level and kidney IL-1β concentration. In conclusion, carvedilol did not counteract the injury caused in the urinary bladders but restored kidney function, presumably via its antioxidant and anti-inflammatory properties.
Collapse
|
4
|
Farshori NN, Saquib Q, Siddiqui MA, Al‐Oqail MM, Al‐Sheddi ES, Al‐Massarani SM, Al‐Khedhairy AA. Protective effects of
Nigella sativa
extract against H
2
O
2
‐induced cell death through the inhibition of DNA damage and cell cycle arrest in human umbilical vein endothelial cells (HUVECs). J Appl Toxicol 2020; 41:820-831. [DOI: 10.1002/jat.4126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Nida N. Farshori
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box: 22452 Riyadh‐11495 Saudi Arabia
| | - Quaiser Saquib
- DNA Research Chair, Zoology Department, College of Science, King Saud University, P.O. Box‐2455 Riyadh‐11451 Saudi Arabia
- Zoology Department, College of Science, King Saud University, P.O. Box‐2455 Riyadh‐11451 Saudi Arabia
| | - Maqsood A. Siddiqui
- DNA Research Chair, Zoology Department, College of Science, King Saud University, P.O. Box‐2455 Riyadh‐11451 Saudi Arabia
- Zoology Department, College of Science, King Saud University, P.O. Box‐2455 Riyadh‐11451 Saudi Arabia
| | - Mai M. Al‐Oqail
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box: 22452 Riyadh‐11495 Saudi Arabia
| | - Ebtesam S. Al‐Sheddi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box: 22452 Riyadh‐11495 Saudi Arabia
| | - Shaza M. Al‐Massarani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box: 22452 Riyadh‐11495 Saudi Arabia
| | - Abdulaziz A. Al‐Khedhairy
- Zoology Department, College of Science, King Saud University, P.O. Box‐2455 Riyadh‐11451 Saudi Arabia
| |
Collapse
|