1
|
Mortensen NP, Caffaro MM, Krovi A, Kim J, Watson SL, Snyder RW, Patel PR, Fennell TR, Johnson LM. Oral Exposure to Nylon-11 and Polystyrene Nanoplastics During Early-Life in Rats. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:465. [PMID: 40137637 PMCID: PMC11944792 DOI: 10.3390/nano15060465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025]
Abstract
A critical knowledge gap currently exists regarding the potential risks of exposure to nanoplastics (NPs), particularly early in life during key stages of growth and development. Globally abundant plastics, polyamide (nylon) and polystyrene (PS), exist in various products and have been detected in food and beverages as small-scale plastics. In this study, we evaluated how early-life exposure to NPs affects key biological metrics in rat pups. Male and female animals received an oral dose (20 mg/kg/day) of nylon-11 NPs (114 ± 2 nm) or PS NPs (85 ± 1 nm) between postnatal day (PND) 7 and 10. The results showed slight differences in the ratio of liver weight to body weight for male rat pups exposed to PS NPs. Cardiac performance and levels of neurotransmitters and related metabolites in brain tissue showed no differences between animals exposed to NPs and controls. The endogenous metabolite profile in plasma was altered by oral administration of NPs, suggesting perturbation of metabolic pathways involved in amino acid and lipid metabolism. This study explored the biological impacts of oral NP exposure early in life, supporting the need for continued investigations into the potential health effects from exposure to NPs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Leah M. Johnson
- RTI International, 3040 E. Cornwallis Road, Research Triangle Park, Durham, NC 27709, USA (M.M.C.); (A.K.); (J.K.); (S.L.W.); (R.W.S.); (T.R.F.)
| |
Collapse
|
2
|
Mortensen NP, Pathmasiri W, Snyder RW, Caffaro MM, Watson SL, Patel PR, Beeravalli L, Prattipati S, Aravamudhan S, Sumner SJ, Fennell TR. Oral administration of TiO 2 nanoparticles during early life impacts cardiac and neurobehavioral performance and metabolite profile in an age- and sex-related manner. Part Fibre Toxicol 2022; 19:3. [PMID: 34986857 PMCID: PMC8728993 DOI: 10.1186/s12989-021-00444-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/23/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Nanoparticles (NPs) are increasingly incorporated in everyday products. To investigate the effects of early life exposure to orally ingested TiO2 NP, male and female Sprague-Dawley rat pups received four consecutive daily doses of 10 mg/kg body weight TiO2 NP (diameter: 21 ± 5 nm) or vehicle control (water) by gavage at three different pre-weaning ages: postnatal day (PND) 2-5, PND 7-10, or PND 17-20. Cardiac assessment and basic neurobehavioral tests (locomotor activity, rotarod, and acoustic startle) were conducted on PND 20. Pups were sacrificed at PND 21. Select tissues were collected, weighed, processed for neurotransmitter and metabolomics analyses. RESULTS Heart rate was found to be significantly decreased in female pups when dosed between PND 7-10 and PND 17-20. Females dosed between PND 2-5 showed decrease acoustic startle response and when dosed between PND 7-10 showed decreased performance in the rotarod test and increased locomotor activity. Male pups dosed between PND 17-20 showed decreased locomotor activity. The concentrations of neurotransmitters and related metabolites in brain tissue and the metabolomic profile of plasma were impacted by TiO2 NP administration for all dose groups. Metabolomic pathways perturbed by TiO2 NP administration included pathways involved in amino acid and lipid metabolism. CONCLUSION Oral administration of TiO2 NP to rat pups impacted basic cardiac and neurobehavioral performance, neurotransmitters and related metabolites concentrations in brain tissue, and the biochemical profiles of plasma. The findings suggested that female pups were more likely to experience adverse outcome following early life exposure to oral TiO2 NP than male pups. Collectively the data from this exploratory study suggest oral administration of TiO2 NP cause adverse biological effects in an age- and sex-related manner, emphasizing the need to understand the short- and long-term effects of early life exposure to TiO2 NP.
Collapse
Affiliation(s)
- Ninell P Mortensen
- Discovery Sciences, RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC, 27709, USA.
| | - Wimal Pathmasiri
- UNC Nutrition Research Institute, The University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Rodney W Snyder
- Discovery Sciences, RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Maria Moreno Caffaro
- Discovery Sciences, RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Scott L Watson
- Discovery Sciences, RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Purvi R Patel
- Discovery Sciences, RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Lakshmi Beeravalli
- Joint School of Nanoscience and Nanoengineering, 2907 East Gate City Blvd., Greensboro, NC, 27401, USA
| | - Sharmista Prattipati
- Joint School of Nanoscience and Nanoengineering, 2907 East Gate City Blvd., Greensboro, NC, 27401, USA
| | - Shyam Aravamudhan
- Joint School of Nanoscience and Nanoengineering, 2907 East Gate City Blvd., Greensboro, NC, 27401, USA
| | - Susan J Sumner
- UNC Nutrition Research Institute, The University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Timothy R Fennell
- Discovery Sciences, RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
3
|
Mortensen NP, Snyder RW, Pathmasiri W, Moreno Caffaro M, Sumner SJ, Fennell TR. Intravenous administration of three multiwalled carbon nanotubes to female rats and their effect on urinary biochemical profile. J Appl Toxicol 2021; 42:409-422. [PMID: 34569639 DOI: 10.1002/jat.4226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/13/2021] [Accepted: 07/27/2021] [Indexed: 11/06/2022]
Abstract
This study was conducted to investigate the influence of outer diameter (OD) and length (L) of multiwalled carbon nanotubes (MWCNTs) on biodistribution and the perturbation of endogenous metabolite profiles. Three different-sized carboxylated MWCNTs (NIEHS-12-2: L 0.5-2 μm, OD 10-20 nm, NIEHS-13-2: L 0.5-2 μm, OD 30-50 nm, and NIEHS-14-2: L 10-30 μm, OD 10-20 nm) in water were administered to female Sprague-Dawley rats as a single intravenous dose of 1 mg/kg MWCNTs. Biodistribution in liver, lung, spleen, and lymph nodes was evaluated in tissue sections at 1 and 7 days' post-dosing using enhanced darkfield microscopy and hyperspectral imaging. Nuclear magnetic resonance (NMR) analysis was used for biochemical profiling and pathway mapping of endogenous metabolites in urine collected at 24-h intervals prior to dosing, at Day 1 and Day 7. At Day 1 and Day 7, all three MWCNTs were observed in liver. NIEHS-12-2 was observed in spleen, whereas NIEHS-13-2 and NIEHS-14-2 were not. All three MWCNTs were observed in lymph nodes and lung at Day 7. The urinary biochemical profile showed the highest positive fold change (FC) at Day 7 for the metabolites acetate, alanine, and lactate, whereas 1-methylnicotinamide, 2-oxoglutarate, and hippurate had some of the lowest FCs for all three MWCNTs. This study demonstrates that the observed tissue location of MWCNTs is size dependent. Overlaps in the perturbation of endogenous metabolite profiles were found regardless of their size, and the biochemical responses were more profound at Day 7 compared with Day 1, indicating a delayed biological response to MWCNTs.
Collapse
Affiliation(s)
- Ninell P Mortensen
- Discovery Sciences, RTI International, Research Triangle Park, North Carolina, USA
| | - Rodney W Snyder
- Discovery Sciences, RTI International, Research Triangle Park, North Carolina, USA
| | - Wimal Pathmasiri
- UNC Nutrition Research Institute, The University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA
| | - Maria Moreno Caffaro
- Discovery Sciences, RTI International, Research Triangle Park, North Carolina, USA
| | - Susan J Sumner
- UNC Nutrition Research Institute, The University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA
| | - Timothy R Fennell
- Discovery Sciences, RTI International, Research Triangle Park, North Carolina, USA
| |
Collapse
|
4
|
Mortensen NP, Moreno Caffaro M, Aravamudhan S, Beeravalli L, Prattipati S, Snyder RW, Watson SL, Patel PR, Weber FX, Montgomery SA, Sumner SJ, Fennell TR. Simulated Gastric Digestion and In Vivo Intestinal Uptake of Orally Administered CuO Nanoparticles and TiO 2 E171 in Male and Female Rat Pups. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1487. [PMID: 34199726 PMCID: PMC8230348 DOI: 10.3390/nano11061487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
Oral exposure to nanoparticles (NPs) during early life is an understudied area. The goals of this study were to evaluate the effect of pre-weaned rat gastric fluids on 50 nm CuO NPs and TiO2 E171 in vitro, and to evaluate uptake in vivo. The NP uptake was studied in vivo in male and female Sprague-Dawley rat pups following oral administration of four consecutive daily doses of 10 mg/kg CuO NPs, TiO2 E171, or vehicle control (water) between postnatal day (PND) 7-10. Rat pups were sacrificed on either PND10 or PND21. Simulated digestion led to dissolution of CuO NPs at the later ages tested (PND14 and PND21, but not PND7). In vivo intestinal uptake of CuO NPs and TiO2 E171 was observed by hyperspectral imaging of intestinal cross sections. Brightfield microscopy showed that the number of immune cells increased in the intestinal tissue following NP administration. Orally administered NPs led to low intestinal uptake of NPs and an increase in immune cells in the small and large intestine, suggesting that oral exposure to NPs during early life may lead to irritation or a low-grade inflammation. The long-term impact of increased immune cells in the intestinal tract during early life is unknown.
Collapse
Affiliation(s)
- Ninell P. Mortensen
- RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC 27709, USA; (M.M.C.); (R.W.S.); (S.L.W.); (P.R.P.); (F.X.W.); (T.R.F.)
| | - Maria Moreno Caffaro
- RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC 27709, USA; (M.M.C.); (R.W.S.); (S.L.W.); (P.R.P.); (F.X.W.); (T.R.F.)
| | - Shyam Aravamudhan
- Joint School of Nanoscience and Nanoengineering, 2907 East Gate City Blvd., Greensboro, NC 27401, USA; (S.A.); (L.B.); (S.P.)
| | - Lakshmi Beeravalli
- Joint School of Nanoscience and Nanoengineering, 2907 East Gate City Blvd., Greensboro, NC 27401, USA; (S.A.); (L.B.); (S.P.)
| | - Sharmista Prattipati
- Joint School of Nanoscience and Nanoengineering, 2907 East Gate City Blvd., Greensboro, NC 27401, USA; (S.A.); (L.B.); (S.P.)
| | - Rodney W. Snyder
- RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC 27709, USA; (M.M.C.); (R.W.S.); (S.L.W.); (P.R.P.); (F.X.W.); (T.R.F.)
| | - Scott L. Watson
- RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC 27709, USA; (M.M.C.); (R.W.S.); (S.L.W.); (P.R.P.); (F.X.W.); (T.R.F.)
| | - Purvi R. Patel
- RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC 27709, USA; (M.M.C.); (R.W.S.); (S.L.W.); (P.R.P.); (F.X.W.); (T.R.F.)
| | - Frank X. Weber
- RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC 27709, USA; (M.M.C.); (R.W.S.); (S.L.W.); (P.R.P.); (F.X.W.); (T.R.F.)
| | - Stephanie A. Montgomery
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Susan J. Sumner
- UNC Nutrition Research Institute, The University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC 28081, USA;
| | - Timothy R. Fennell
- RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC 27709, USA; (M.M.C.); (R.W.S.); (S.L.W.); (P.R.P.); (F.X.W.); (T.R.F.)
| |
Collapse
|