1
|
Kantere D, Siarov J, De Lara S, Parhizkar S, Olofsson Bagge R, Wennberg Larkö A, Ericson MB. Label‐free laser scanning microscopy targeting sentinel lymph node diagnostics: A feasibility study ex vivo. TRANSLATIONAL BIOPHOTONICS 2020. [DOI: 10.1002/tbio.202000002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Despoina Kantere
- Department of Dermatology and Venereology, Institute of Clinical Sciences University of Gothenburg Gothenburg Sweden
| | - Jan Siarov
- Department of Pathology University of Gothenburg Gothenburg Sweden
| | - Shahin De Lara
- Department of Pathology University of Gothenburg Gothenburg Sweden
| | - Samad Parhizkar
- Department of Pathology University of Gothenburg Gothenburg Sweden
| | - Roger Olofsson Bagge
- Department of Surgery, Institute of Clinical Sciences University of Gothenburg Gothenburg Sweden
| | - Ann‐Marie Wennberg Larkö
- Department of Dermatology and Venereology, Institute of Clinical Sciences University of Gothenburg Gothenburg Sweden
| | - Marica B. Ericson
- Biomedical photonics group, Department of Chemistry and Molecular Biology University of Gothenburg Gothenburg Sweden
| |
Collapse
|
2
|
Borglin J, Selegård R, Aili D, Ericson MB. Peptide Functionalized Gold Nanoparticles as a Stimuli Responsive Contrast Medium in Multiphoton Microscopy. NANO LETTERS 2017; 17:2102-2108. [PMID: 28215085 DOI: 10.1021/acs.nanolett.7b00611] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
There is a need for biochemical contrast mediators with high signal-to-noise ratios enabling noninvasive biomedical sensing, for example, for neural sensing and protein-protein interactions, in addition to cancer diagnostics. The translational challenge is to develop a biocompatible approach ensuring high biochemical contrast while avoiding a raise of the background signal. We here present a concept where gold nanoparticles (AuNPs) can be utilized as a stimuli responsive contrast medium by chemically triggering their ability to exhibit multiphoton-induced luminescence (MIL) when performing multiphoton laser scanning microscopy (MPM). Proof-of-principle is demonstrated using peptide-functionalized AuNPs sensitive to zinc ions (Zn2+). Dispersed particles are invisible in the MPM until addition of millimolar concentrations of Zn2+ upon which MIL is enabled through particle aggregation caused by specific peptide interactions and folding. The process can be reversed by removal of the Zn2+ using a chelator, thereby resuspending the AuNPs. In addition, the concept was demonstrated by exposing the particles to matrix metalloproteinase-7 (MMP-7) causing peptide digestion resulting in AuNP aggregation, significantly elevating the MIL signal from the background. The approach is based on the principle that aggregation shifts the plasmon resonance, elevating the absorption cross section in the near-infrared wavelength region enabling onset of MIL. This Letter demonstrates how biochemical sensing can be obtained in far-field MPM and should be further exploited as a future tool for noninvasive optical biosensing.
Collapse
Affiliation(s)
- Johan Borglin
- Biomedical Photonics Group, Department of Chemistry and Molecular biology, University of Gothenburg , 412 96 Gothenburg, Sweden
| | - Robert Selegård
- Division of Molecular Physics, Department of Physics, Chemistry, and Biology (IFM), Linköping University , 581 83 Linköping, Sweden
| | - Daniel Aili
- Division of Molecular Physics, Department of Physics, Chemistry, and Biology (IFM), Linköping University , 581 83 Linköping, Sweden
| | - Marica B Ericson
- Biomedical Photonics Group, Department of Chemistry and Molecular biology, University of Gothenburg , 412 96 Gothenburg, Sweden
| |
Collapse
|
3
|
Galli R, Uckermann O, Temme A, Leipnitz E, Meinhardt M, Koch E, Schackert G, Steiner G, Kirsch M. Assessing the efficacy of coherent anti-Stokes Raman scattering microscopy for the detection of infiltrating glioblastoma in fresh brain samples. JOURNAL OF BIOPHOTONICS 2017; 10:404-414. [PMID: 27854107 DOI: 10.1002/jbio.201500323] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/10/2016] [Accepted: 02/21/2016] [Indexed: 05/20/2023]
Abstract
Coherent anti-Stokes Raman scattering (CARS) microscopy is an emerging technique for identification of brain tumors. However, tumor identification by CARS microscopy on bulk samples and in vivo has been so far verified retrospectively on histological sections, which only provide a gross reference for the interpretation of CARS images without matching at cellular level. Therefore, fluorescent labels were exploited for direct assessment of the interpretation of CARS images of solid and infiltrative tumors. Glioblastoma cells expressing green fluorescent protein (GFP) were used for induction of tumors in mice (n = 7). The neoplastic nature of cells imaged by CARS microscopy was unequivocally verified by addressing two-photon fluorescence of GFP on fresh brain slices and in vivo. In fresh unfixed biopsies of human glioblastoma (n = 10), the fluorescence of 5-aminolevulinic acid-induced protoporphyrin IX was used for identification of tumorous tissue. Distinctive morphological features of glioblastoma cells, i.e. larger nuclei, evident nuclear membrane and nucleolus, were identified in the CARS images of both mouse and human brain tumors. This approach demonstrates that the chemical contrast provided by CARS allows the localization of infiltrating tumor cells in fresh tissue and that the cell morphology in CARS images is useful for tumor recognition. Experimental glioblastoma expressing green fluorescent protein.
Collapse
Affiliation(s)
- Roberta Galli
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Ortrud Uckermann
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74,, 01307, Dresden, Germany
| | - Achim Temme
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74,, 01307, Dresden, Germany
| | - Elke Leipnitz
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74,, 01307, Dresden, Germany
| | - Matthias Meinhardt
- Neuropathology, Institute of Pathology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Edmund Koch
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Gabriele Schackert
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74,, 01307, Dresden, Germany
| | - Gerald Steiner
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- Faculty of Physics, dept. of General Physics and Spectroscopy, Vilnius University, Sauletekio av. 9 bl. 3, 10222, Vilnius, Lithuania
| | - Matthias Kirsch
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74,, 01307, Dresden, Germany
- CRTD/DFG-Center for Regenerative Therapies Dresden - Cluster of Excellence, Technische Universität Dresden, Fetscherstr. 105, 01307, Dresden, Germany
| |
Collapse
|
4
|
Yew E, Rowlands C, So PTC. Application of Multiphoton Microscopy in Dermatological Studies: a Mini-Review. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2014; 7:1330010. [PMID: 25075226 PMCID: PMC4112132 DOI: 10.1142/s1793545813300103] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This review summarizes the historical and more recent developments of multiphoton microscopy, as applied to dermatology. Multiphoton microscopy offers several advantages over competing microscopy techniques: there is an inherent axial sectioning, penetration depths that compete well with confocal microscopy on account of the use of near-infrared light, and many two-photon contrast mechanisms, such as second-harmonic generation, have no analogue in one-photon microscopy. While the penetration depths of photons into tissue are typically limited on the order of hundreds of microns, this is of less concern in dermatology, as the skin is thin and readily accessible. As a result, multiphoton microscopy in dermatology has generated a great deal of interest, much of which is summarized here. The review covers the interaction of light and tissue, as well as the various considerations that must be made when designing an instrument. The state of multiphoton microscopy in imaging skin cancer and various other diseases is also discussed, along with the investigation of aging and regeneration phenomena, and finally, the use of multiphoton microscopy to analyze the transdermal transport of drugs, cosmetics and other agents is summarized. The review concludes with a look at potential future research directions, especially those that are necessary to push these techniques into widespread clinical acceptance.
Collapse
Affiliation(s)
- Elijah Yew
- Singapore-MIT Alliance for Research and Technology (SMART), 1 CREATE Way CREATE Tower, Singapore 138602
| | - Christopher Rowlands
- Department of Biological Engineering Massachusetts Institute of Technology 77 Massachusetts Ave, Cambridge MA 02139, USA
| | - Peter T. C. So
- Singapore-MIT Alliance for Research and Technology (SMART), 1 CREATE Way CREATE Tower, Singapore 138602
- Department of Biological Engineering Massachusetts Institute of Technology 77 Massachusetts Ave, Cambridge MA 02139, USA
- Department of Mechanical Engineering Massachusetts Institute of Technology 77 Massachusetts Ave, Cambridge MA 02139, USA
- GR Harrison Spectroscopy Laboratory 77 Massachusetts Ave, Cambridge MA 02139, USA
| |
Collapse
|
5
|
Rollakanti KR, Kanick SC, Davis SC, Pogue BW, Maytin EV. Techniques for fluorescence detection of protoporphyrin IX in skin cancers associated with photodynamic therapy. ACTA ACUST UNITED AC 2013; 2:287-303. [PMID: 25599015 DOI: 10.1515/plm-2013-0030] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Photodynamic therapy (PDT) is a treatment modality that uses a specific photosensitizing agent, molecular oxygen, and light of a particular wavelength to kill cells targeted by the therapy. Topically administered aminolevulinic acid (ALA) is widely used to effectively treat cancerous and precancerous skin lesions, resulting in targeted tissue damage and little to no scarring. The targeting aspect of the treatment arises from the fact that ALA is preferentially converted into protoporphyrin IX (PpIX) in neoplastic cells. To monitor the amount of PpIX in tissues, techniques have been developed to measure PpIX-specific fluorescence, which provides information useful for monitoring the abundance and location of the photosensitizer before and during the illumination phase of PDT. This review summarizes the current state of these fluorescence detection techniques. Non-invasive devices are available for point measurements, or for wide-field optical imaging, to enable monitoring of PpIX in superficial tissues. To gain access to information at greater tissue depths, multi-modal techniques are being developed which combine fluorescent measurements with ultrasound or optical coherence tomography, or with microscopic techniques such as confocal or multiphoton approaches. The tools available at present, and newer devices under development, offer the promise of better enabling clinicians to inform and guide PDT treatment planning, thereby optimizing therapeutic outcomes for patients.
Collapse
Affiliation(s)
- Kishore R Rollakanti
- Department of Chemical and Biomedical Engineering, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA; and Department of Biomedical Engineering, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Stephen C Kanick
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, USA
| | - Scott C Davis
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, USA
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, USA
| | - Edward V Maytin
- Department of Chemical and Biomedical Engineering, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA; Department of Biomedical Engineering, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA; and Department of Dermatology, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|