1
|
Kim TJ, Wang Q, Shelor M, Pratx G. Single-cell radioluminescence microscopy with two-fold higher sensitivity using dual scintillator configuration. PLoS One 2020; 15:e0221241. [PMID: 32634153 PMCID: PMC7340323 DOI: 10.1371/journal.pone.0221241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 06/21/2020] [Indexed: 11/25/2022] Open
Abstract
Radioluminescence microscopy (RLM) is an imaging technique that allows quantitative analysis of clinical radiolabeled drugs and probes in single cells. However, the modality suffers from slow data acquisition (15–30 minutes), thus critically affecting experiments with short-lived radioactive drugs. To overcome this issue, we suggest an approach that significantly accelerates data collection. Instead of using a single scintillator to image the decay of radioactive molecules, we sandwiched the radiolabeled cells between two scintillators. As proof of concept, we imaged cells labeled with [18F]FDG, a radioactive glucose popularly used in oncology to image tumors. Results show that the double scintillator configuration increases the microscope sensitivity by two-fold, thus reducing the image acquisition time by half to achieve the same result as the single scintillator approach. The experimental results were also compared with Geant4 Monte Carlo simulation to confirm the two-fold increase in sensitivity with only minor degradation in spatial resolution. Overall, these findings suggest that the double scintillator configuration can be used to perform time-sensitive studies such as cell pharmacokinetics or cell uptake of short-lived radiotracers.
Collapse
Affiliation(s)
- Tae Jin Kim
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, California, United States of America
- * E-mail:
| | - Qian Wang
- Department of Bioengineering, University of California, Davis, California, United States of America
| | - Mark Shelor
- Department of Biomedical Engineering, University of California, Merced, California, United States of America
| | - Guillem Pratx
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, California, United States of America
| |
Collapse
|
2
|
Liu Z, Zhang P, Ji H, Long Y, Jing B, Wan L, Xi D, An R, Lan X. A mini-panel PET scanner-based microfluidic radiobioassay system allowing high-throughput imaging of real-time cellular pharmacokinetics. LAB ON A CHIP 2020; 20:1110-1123. [PMID: 32043092 DOI: 10.1039/c9lc01066a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
On-chip radiometric detection of biological samples using radiotracers has become an emerging research field known as microfluidic radiobioassays. Performing parallel radiobioassays is highly desirable for saving time/effort, reducing experimental variation between assays, and minimizing the cost of the radioisotope. Continuously infused microfluidic radioassay (CIMR) is one of the useful tools for investigating cellular pharmacokinetics and assessing the binding and uptakes of radiopharmaceuticals. However, existing CIMR systems can only measure the dynamics of one sample at a time due to the limited field of view (FOV) of the positron detector. To increase the throughput, we propose a new CIMR system with a custom-built miniaturized panel-based positron-emission tomography (PET) scanner and a parallel infusion setup/method, capable of imaging the cellular pharmacokinetics of three samples in one measurement. With this system, the pharmacokinetics of parallel or comparison samples can be imaged simultaneously. The increased throughput is attributed to two innovations: 1) the large 3D FOV of the mini-panel PET scanner, enabling more samples to be imaged in the microfluidic chip; and 2) a parallel infusion method, in which only one reference chamber is needed for indicating the dynamic input of the infused radiotracer medium, thus saving the total reference chambers needed compared to the current sequential infusion method. Combining the CIMR technique and the mini-panel PET scanner, this study also firstly demonstrated the feasibility of using PET, as an imaging modality, for microfluidic radiobioassays. Besides the increased throughput, the 3D imaging of PET also provides possibilities for further applications such as organoid/3D culturing systems, non-planar microfluidics, and organs-on-chips. The system is more practical for a broader range of applications in nuclear medicine, molecular imaging, and lab-on-a-chip studies.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, Hubei Province 430022, China. and Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Pengfei Zhang
- Biomedical Engineering Department, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hao Ji
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, Hubei Province 430022, China. and Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yu Long
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, Hubei Province 430022, China. and Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Boping Jing
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, Hubei Province 430022, China. and Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Lu Wan
- RAYDATA Technology Co., Ltd. (Wuhan), Wuhan 430074, China
| | - Daoming Xi
- Raycan Technology Co., Ltd. (Suzhou), Suzhou 215163, China
| | - Rui An
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, Hubei Province 430022, China. and Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, Hubei Province 430022, China. and Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| |
Collapse
|
3
|
Liu Z, Lan X. Microfluidic radiobioassays: a radiometric detection tool for understanding cellular physiology and pharmacokinetics. LAB ON A CHIP 2019; 19:2315-2339. [PMID: 31222194 DOI: 10.1039/c9lc00159j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The investigation of molecular uptake and its kinetics in cells is valuable for understanding the cellular physiological status, the observation of drug interventions, and the development of imaging agents and pharmaceuticals. Microfluidic radiobioassays, or microfluidic radiometric bioassays, constitute a radiometric imaging-on-a-chip technology for the assay of biological samples using radiotracers. From 2006 to date, microfluidic radiobioassays have shown advantages in many applications, including radiotracer characterization, enzyme activity radiobioassays, fast drug evaluation, single-cell imaging, facilitation of dynamic positron emission tomography (PET) imaging, and cellular pharmacokinetics (PK)/pharmacodynamics (PD) studies. These advantages lie in the minimized and integrated detection scheme, allowing real-time tracking of dynamic uptake, high sensitivity radiotracer imaging, and quantitative interpretation of imaging results. In this review, the basics of radiotracers, various radiometric detection methods, and applications of microfluidic radiobioassays will be introduced and summarized, and the potential applications and future directions of microfluidic radiobioassays will be forecasted.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Nuclear Medicine, Wuhan Union Hospital, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, Hubei Province 430022, China.
| | | |
Collapse
|
4
|
Sengupta D, Kim TJ, Almasi S, Miller S, Marton Z, Nagarkar V, Pratx G. Development and characterization of a scintillating cell imaging dish for radioluminescence microscopy. Analyst 2018; 143:1862-1869. [PMID: 29543293 PMCID: PMC6035884 DOI: 10.1039/c8an00106e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Radioluminescence microscopy is an emerging modality that can be used to image radionuclide probes with micron-scale resolution. This technique is particularly useful as a way to probe the metabolic behavior of single cells and to screen and characterize radiopharmaceuticals, but the quality of the images is critically dependent on the scintillator material used to image the cells. In this paper, we detail the development of a microscopy dish made of a thin-film scintillating material, Lu2O3:Eu, that could be used as the blueprint for a future consumable product. After developing a simple quality control method based on long-lived alpha and beta sources, we characterize the radioluminescence properties of various thin-film scintillator samples. We find consistent performance for most samples, but also identify a few samples that do not meet the specifications, thus stressing the need for routine quality control prior to biological experiments. In addition, we test and quantify the transparency of the material, and demonstrate that transparency correlates with thickness. Finally, we evaluate the biocompatibility of the material and show that the microscopy dish can produce radioluminescent images of live single cells.
Collapse
Affiliation(s)
- Debanti Sengupta
- Radiation Oncology, Stanford University, 300 Pasteur Dr, Stanford, California, USA.
| | - Tae Jin Kim
- Radiation Oncology, Stanford University, 300 Pasteur Dr, Stanford, California, USA.
| | - Sepideh Almasi
- Radiation Oncology, Stanford University, 300 Pasteur Dr, Stanford, California, USA.
| | - Stuart Miller
- Radiation Monitoring Devices Inc, Watertown, Massachusetts, USA
| | - Zsolt Marton
- Radiation Monitoring Devices Inc, Watertown, Massachusetts, USA
| | - Vivek Nagarkar
- Radiation Monitoring Devices Inc, Watertown, Massachusetts, USA
| | - Guillem Pratx
- Radiation Oncology, Stanford University, 300 Pasteur Dr, Stanford, California, USA.
| |
Collapse
|