1
|
Moon J, Jeon J, Kong E, Hong S, Lee J, Lee EK, Kim P. Intravital two-photon imaging and quantification of hepatic steatosis and fibrosis in a live small animal model. BIOMEDICAL OPTICS EXPRESS 2021; 12:7918-7927. [PMID: 35003876 PMCID: PMC8713697 DOI: 10.1364/boe.442608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/24/2021] [Accepted: 11/16/2021] [Indexed: 05/02/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases closely associated with the metabolic system, including obesity and type 2 diabetes. The progression of NAFLD with advanced fibrosis is associated with an increased risk of liver cirrhosis and cancer as well as various extra-hepatic diseases. Yet, the underlying mechanism is not fully understood partly due to the absence of effective high-resolution in vivo imaging methods and the appropriate animal models recapitulating the pathology of NAFLD. To improve our understanding about complex pathophysiology of NAFLD, the need for an advanced imaging methodology to visualize and quantify subcellular-level features of NAFLD in vivo over time is ever-increasing. In this study, we established an advanced in vivo two-photon imaging technique to visualize and quantify subcellular-level pathological features of NAFLD in a live mouse animal developing hepatic steatosis, fibrosis, and disrupted microvasculature.
Collapse
Affiliation(s)
- Jieun Moon
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jehwi Jeon
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Eunji Kong
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sujung Hong
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jingu Lee
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Eun Kyung Lee
- Department of Internal Medicine, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Pilhan Kim
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
2
|
Lee JH, Rico-Jimenez JJ, Zhang C, Alex A, Chaney EJ, Barkalifa R, Spillman DR, Marjanovic M, Arp Z, Hood SR, Boppart SA. Simultaneous label-free autofluorescence and multi-harmonic imaging reveals in vivo structural and metabolic changes in murine skin. BIOMEDICAL OPTICS EXPRESS 2019; 10:5431-5444. [PMID: 31646056 PMCID: PMC6788598 DOI: 10.1364/boe.10.005431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/11/2019] [Accepted: 09/24/2019] [Indexed: 05/10/2023]
Abstract
Simultaneous quantification of multifarious cellular metabolites and the extracellular matrix in vivo has been long sought. Simultaneous label-free autofluorescence and multi-harmonic (SLAM) microscopy has achieved simultaneous four-channel nonlinear imaging to study tissue structure and metabolism. In this study, we implemented two laser systems and directly compared SLAM microscopy with conventional two-photon microscopy for in vivo imaging. We found that three-photon imaging of adenine dinucleotide (phosphate) (NAD(P)H) in SLAM microscopy using our tailored laser source provided better resolution, contrast, and background suppression than conventional two-photon imaging of NAD(P)H. We also integrated fluorescence lifetime imaging with SLAM microscopy, and enabled differentiation of free and bound NAD(P)H. We imaged murine skin in vivo and showed that changes in tissue structure, cell dynamics, and metabolism can be monitored simultaneously in real-time. We also discovered an increase in metabolism and protein-bound NAD(P)H in skin cells during the early stages of wound healing.
Collapse
Affiliation(s)
- Jang Hyuk Lee
- Center for Optical Molecular Imaging, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Co-first authors with equal contribution
| | - Jose J. Rico-Jimenez
- Center for Optical Molecular Imaging, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Co-first authors with equal contribution
| | - Chi Zhang
- Center for Optical Molecular Imaging, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Aneesh Alex
- GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Eric J. Chaney
- Center for Optical Molecular Imaging, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ronit Barkalifa
- Center for Optical Molecular Imaging, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Darold R. Spillman
- Center for Optical Molecular Imaging, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Marina Marjanovic
- Center for Optical Molecular Imaging, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zane Arp
- GlaxoSmithKline, Collegeville, PA 19426, USA
| | | | - Stephen A. Boppart
- Center for Optical Molecular Imaging, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| |
Collapse
|