1
|
Dey R, Alexandrov S, Owens P, Kelly J, Phelan S, Leahy M. Skin cancer margin detection using nanosensitive optical coherence tomography and a comparative study with confocal microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:5654-5666. [PMID: 36733740 PMCID: PMC9872867 DOI: 10.1364/boe.474334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 05/08/2023]
Abstract
Excision biopsy and histology represent the gold standard for morphological investigation of the skin, in particular for cancer diagnostics. Nevertheless, a biopsy may alter the original morphology, usually requires several weeks for results, is non-repeatable on the same site and always requires an iatrogenic trauma. Hence, diagnosis and clinical management of diseases may be substantially improved by new non-invasive imaging techniques. Optical Coherence Tomography (OCT) is a non-invasive depth-resolved optical imaging modality based on low coherence interferometry that enables high-resolution, cross-sectional imaging in biological tissues and it can be used to obtain both structural and functional information. Beyond the resolution limit, it is not possible to detect structural and functional information using conventional OCT. In this paper, we present a recently developed technique, nanosensitive OCT (nsOCT), improved using broadband supercontinuum laser, and demonstrate nanoscale sensitivity to structural changes within ex vivo human skin tissue. The extended spectral bandwidth permitted access to a wider distribution of spatial frequencies and improved the dynamic range of the nsOCT. Firstly, we demonstrate numerical and experimental detection of a few nanometers structural difference using the nsOCT method from single B-scan images of phantoms with sub-micron periodic structures, acting like Bragg gratings, along the depth. Secondly, our study shows that nsOCT can distinguish nanoscale structural changes at the skin cancer margin from the healthy region in en face images at clinically relevant depths. Finally, we compare the nsOCT en face image with a high-resolution confocal microscopy image to confirm the structural differences between the healthy and lesional/cancerous regions, allowing the detection of the skin cancer margin.
Collapse
Affiliation(s)
- Rajib Dey
- Tissue Optics and Microcirculation Imaging (TOMI) Facility, National Biophotonics and Imaging Platform School of Physics, National University of Ireland, Galway, Galway, Ireland
| | - Sergey Alexandrov
- Tissue Optics and Microcirculation Imaging (TOMI) Facility, National Biophotonics and Imaging Platform School of Physics, National University of Ireland, Galway, Galway, Ireland
| | - Peter Owens
- Center for Microscopy and Imaging, National University of Ireland, Galway, Galway, Ireland
| | - Jack Kelly
- Plastic and Reconstructive Surgery, Galway University Hospital, Galway, Ireland
| | - Sine Phelan
- Department of Anatomic Pathology, Galway University Hospital and Department of Pathology, National University of Ireland, Galway, Galway, Ireland
| | - Martin Leahy
- Tissue Optics and Microcirculation Imaging (TOMI) Facility, National Biophotonics and Imaging Platform School of Physics, National University of Ireland, Galway, Galway, Ireland
- Institute of Photonic Sciences (ICFO), Barcelona, Spain
| |
Collapse
|
2
|
Alexandrov S, Arangath A, Zhou Y, Murphy M, Duffy N, Neuhaus K, Shaw G, McAuley R, Leahy M. Accessing depth-resolved high spatial frequency content from the optical coherence tomography signal. Sci Rep 2021; 11:17123. [PMID: 34429483 PMCID: PMC8385072 DOI: 10.1038/s41598-021-96619-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Optical coherence tomography (OCT) is a rapidly evolving technology with a broad range of applications, including biomedical imaging and diagnosis. Conventional intensity-based OCT provides depth-resolved imaging with a typical resolution and sensitivity to structural alterations of about 5–10 microns. It would be desirable for functional biological imaging to detect smaller features in tissues due to the nature of pathological processes. In this article, we perform the analysis of the spatial frequency content of the OCT signal based on scattering theory. We demonstrate that the OCT signal, even at limited spectral bandwidth, contains information about high spatial frequencies present in the object which relates to the small, sub-wavelength size structures. Experimental single frame imaging of phantoms with well-known sub-micron internal structures confirms the theory. Examples of visualization of the nanoscale structural changes within mesenchymal stem cells (MSC), which are invisible using conventional OCT, are also shown. Presented results provide a theoretical and experimental basis for the extraction of high spatial frequency information to substantially improve the sensitivity of OCT to structural alterations at clinically relevant depths.
Collapse
Affiliation(s)
- Sergey Alexandrov
- National University of Ireland, National Biophotonics and Imaging Platform, School of Physics, Tissue Optics and Microcirculation Imaging Group, Galway, H91 TK33, Ireland.
| | - Anand Arangath
- National University of Ireland, National Biophotonics and Imaging Platform, School of Physics, Tissue Optics and Microcirculation Imaging Group, Galway, H91 TK33, Ireland
| | - Yi Zhou
- National University of Ireland, National Biophotonics and Imaging Platform, School of Physics, Tissue Optics and Microcirculation Imaging Group, Galway, H91 TK33, Ireland
| | - Mary Murphy
- Regenerative Medicine Institute, School of Medicine, National University of Ireland, Galway, Ireland
| | - Niamh Duffy
- Regenerative Medicine Institute, School of Medicine, National University of Ireland, Galway, Ireland
| | - Kai Neuhaus
- National University of Ireland, National Biophotonics and Imaging Platform, School of Physics, Tissue Optics and Microcirculation Imaging Group, Galway, H91 TK33, Ireland
| | - Georgina Shaw
- Regenerative Medicine Institute, School of Medicine, National University of Ireland, Galway, Ireland
| | - Ryan McAuley
- National University of Ireland, National Biophotonics and Imaging Platform, School of Physics, Tissue Optics and Microcirculation Imaging Group, Galway, H91 TK33, Ireland
| | - Martin Leahy
- National University of Ireland, National Biophotonics and Imaging Platform, School of Physics, Tissue Optics and Microcirculation Imaging Group, Galway, H91 TK33, Ireland.,Institute of Photonic Sciences (ICFO), Barcelona, Spain
| |
Collapse
|
3
|
Lal C, Alexandrov S, Rani S, Zhou Y, Ritter T, Leahy M. Nanosensitive optical coherence tomography to assess wound healing within the cornea. BIOMEDICAL OPTICS EXPRESS 2020; 11:3407-3422. [PMID: 33014541 PMCID: PMC7510923 DOI: 10.1364/boe.389342] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/19/2020] [Accepted: 04/19/2020] [Indexed: 05/13/2023]
Abstract
Optical coherence tomography (OCT) is a non-invasive depth resolved optical imaging modality, that enables high resolution, cross-sectional imaging in biological tissues and materials at clinically relevant depths. Though OCT offers high resolution imaging, the best ultra-high-resolution OCT systems are limited to imaging structural changes with a resolution of one micron on a single B-scan within very limited depth. Nanosensitive OCT (nsOCT) is a recently developed technique that is capable of providing enhanced sensitivity of OCT to structural changes. Improving the sensitivity of OCT to detect structural changes at the nanoscale level, to a depth typical for conventional OCT, could potentially improve the diagnostic capability of OCT in medical applications. In this paper, we demonstrate the capability of nsOCT to detect structural changes deep in the rat cornea following superficial corneal injury.
Collapse
Affiliation(s)
- Cerine Lal
- Tissue Optics and Microcirculation Imaging Facility, National Biophotonics and Imaging Platform, School of Physics, National University of Ireland, Galway, Ireland
| | - Sergey Alexandrov
- Tissue Optics and Microcirculation Imaging Facility, National Biophotonics and Imaging Platform, School of Physics, National University of Ireland, Galway, Ireland
| | - Sweta Rani
- Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Yi Zhou
- Tissue Optics and Microcirculation Imaging Facility, National Biophotonics and Imaging Platform, School of Physics, National University of Ireland, Galway, Ireland
| | - Thomas Ritter
- Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Martin Leahy
- Tissue Optics and Microcirculation Imaging Facility, National Biophotonics and Imaging Platform, School of Physics, National University of Ireland, Galway, Ireland
| |
Collapse
|
4
|
Zhou Y, Alexandrov S, Nolan A, Das N, Dey R, Leahy M. Noninvasive detection of nanoscale structural changes in cornea associated with cross-linking treatment. JOURNAL OF BIOPHOTONICS 2020; 13:e201960234. [PMID: 32067338 DOI: 10.1002/jbio.201960234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/24/2020] [Accepted: 02/13/2020] [Indexed: 05/18/2023]
Abstract
Corneal cross-linking (CXL) using ultraviolet-A (UVA) irradiation with a riboflavin photosensitizer has grown from an interesting concept to a practical clinical treatment for corneal ectatic diseases globally, such as keratoconus. To characterize the corneal structural changes, existing methods such as X-ray microscopy, transmission electron microscopy, histology and optical coherence tomography (OCT) have been used. However, these methods have various drawbacks such as invasive detection, the impossibility for in vivo measurement, or limited resolution and sensitivity to structural alterations. Here, we report the application of oversampling nanosensitive OCT for probing the corneal structural alterations. The results indicate that the spatial period increases slightly after 30 minutes riboflavin instillation but decreases significantly after 30 minutes UVA irradiation following the Dresden protocol. The proposed noninvasive method can be implemented using existing OCT systems, without any additional components, for detecting nanoscale changes with the potential to assist diagnostic assessment during CXL treatment, and possibly to be a real-time monitoring tool in clinics.
Collapse
Affiliation(s)
- Yi Zhou
- Tissue Optics and Microcirculation Imaging Facility, National Biophotonics and Imaging Platform, School of Physics, National University of Ireland, Galway, Ireland
| | - Sergey Alexandrov
- Tissue Optics and Microcirculation Imaging Facility, National Biophotonics and Imaging Platform, School of Physics, National University of Ireland, Galway, Ireland
| | - Andrew Nolan
- Tissue Optics and Microcirculation Imaging Facility, National Biophotonics and Imaging Platform, School of Physics, National University of Ireland, Galway, Ireland
| | - Nandan Das
- Tissue Optics and Microcirculation Imaging Facility, National Biophotonics and Imaging Platform, School of Physics, National University of Ireland, Galway, Ireland
| | - Rajib Dey
- Tissue Optics and Microcirculation Imaging Facility, National Biophotonics and Imaging Platform, School of Physics, National University of Ireland, Galway, Ireland
| | - Martin Leahy
- Tissue Optics and Microcirculation Imaging Facility, National Biophotonics and Imaging Platform, School of Physics, National University of Ireland, Galway, Ireland
| |
Collapse
|