1
|
Saeidi T, Wang S, Contreras HA, Daly MJ, Betz V, Lilge L. Photosensitizer spatial heterogeneity and its impact on personalized interstitial photodynamic therapy treatment planning. JOURNAL OF BIOMEDICAL OPTICS 2025; 30:018001. [PMID: 39802351 PMCID: PMC11724368 DOI: 10.1117/1.jbo.30.1.018001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025]
Abstract
Significance Personalized photodynamic therapy (PDT) treatment planning requires knowledge of the spatial and temporal co-localization of photons, photosensitizers (PSs), and oxygen. The inter- and intra-subject variability in the photosensitizer concentration can lead to suboptimal outcomes using standard treatment plans. Aim We aim to quantify the PS spatial variation in tumors and its effect on PDT treatment planning solutions. Approach The spatial variability of two PSs is imaged at various spatial resolutions for an orthotopic rat glioma model and applied in silico to human glioblastoma models to determine the spatial PDT dose, including in organs at risk. An open-source interstitial photodynamic therapy (iPDT) planning tool is applied to these models, deriving the spatial photosensitizer quantification resolution that consistently impacts iPDT source placement and power allocation. Results The ex vivo studies revealed a bimodal photosensitizer distribution in the tumor. The concentration of the PS can vary by a factor of 2 between the tumor core and rim, with slight variation within the core but a factor of 5 in the rim. An average sampling volume of 1 mm 3 for photosensitizer quantification will result in significantly different iPDT planning solutions for each case. Conclusions Assuming homogeneous photosensitizer distribution results in suboptimal therapeutic outcomes, we highlight the need to predict the photosensitizer distribution before source placement for effective treatment plans.
Collapse
Affiliation(s)
- Tina Saeidi
- University of Toronto, University Health Network, Princess Margaret Cancer Centre, Department of Medical Biophysics, Toronto, Ontario, Canada
| | - Shuran Wang
- University of Toronto, Edward S. Rogers Sr. Department of Electrical and Computer Engineering, Toronto, Ontario, Canada
| | - Hector A. Contreras
- University of Toronto, University Health Network, Princess Margaret Cancer Centre, Department of Medical Biophysics, Toronto, Ontario, Canada
| | - Michael J. Daly
- University Health Network, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Vaughn Betz
- University of Toronto, Edward S. Rogers Sr. Department of Electrical and Computer Engineering, Toronto, Ontario, Canada
| | - Lothar Lilge
- University of Toronto, University Health Network, Princess Margaret Cancer Centre, Department of Medical Biophysics, Toronto, Ontario, Canada
- University Health Network, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Kafrashian Z, Brück S, Rogin P, Khamdan M, Farrukh HSUB, Pearson S, del Campo A. Segmented, Side-Emitting Hydrogel Optical Fibers for Multimaterial Extrusion Printing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2309166. [PMID: 39632473 PMCID: PMC11775871 DOI: 10.1002/adma.202309166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/14/2024] [Indexed: 12/07/2024]
Abstract
Side-emitting optical fibers allow light to be deliberately outcoupled along the fiber. Introducing a customized side-emission profile requires modulation of the guiding and emitting properties along the fiber length, which is a particular challenge in continuous processing of soft waveguides. In this work, it is demonstrated that multimaterial extrusion printing can generate hydrogel optical fibers with tailored segments for light-side emission. The fibers are based on diacrylated Pluronic F-127 (PluDA). 1 mm diameter fibers are printed with segments of different optical properties by switching between a PluDA waveguiding ink and a PluDA scattering ink containing nanoparticles. The method allows the fabrication of fibers with segment lengths below 500 microns in a continuous process. The length of the segments is tailored by varying the switching time between inks during printing. Fibers with customized side-emission profiles along their length are presented. The functionality of the printed fibers is demonstrated by exciting fluorescence inside a surrounding 3D hydrogel. The presented technology and material combination allow unprecedented flexibility for designing soft optical fibers with customizable optical properties using simple processes and a medical material. This approach can be of interest to improve illumination inside tissues for photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Zahra Kafrashian
- INM – Leibniz Institute for New MaterialsCampus D2 266123SaarbrückenGermany
- Saarland UniversityChemistry Department66123SaarbrückenGermany
| | - Stefan Brück
- INM – Leibniz Institute for New MaterialsCampus D2 266123SaarbrückenGermany
| | - Peter Rogin
- INM – Leibniz Institute for New MaterialsCampus D2 266123SaarbrückenGermany
| | - Mokhamad Khamdan
- INM – Leibniz Institute for New MaterialsCampus D2 266123SaarbrückenGermany
| | - Hafiz Syed Usama Bin Farrukh
- INM – Leibniz Institute for New MaterialsCampus D2 266123SaarbrückenGermany
- Saarland UniversityChemistry Department66123SaarbrückenGermany
| | - Samuel Pearson
- INM – Leibniz Institute for New MaterialsCampus D2 266123SaarbrückenGermany
| | - Aránzazu del Campo
- INM – Leibniz Institute for New MaterialsCampus D2 266123SaarbrückenGermany
- Saarland UniversityChemistry Department66123SaarbrückenGermany
| |
Collapse
|
3
|
Sun H, Ong Y, Kim MM, Dimofte A, Singhal S, Cengel KA, Yodh AG, Zhu TC. A Comprehensive Study of Reactive Oxygen Species Explicit Dosimetry for Pleural Photodynamic Therapy. Antioxidants (Basel) 2024; 13:1436. [PMID: 39765767 PMCID: PMC11672818 DOI: 10.3390/antiox13121436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 01/11/2025] Open
Abstract
Photodynamic therapy (PDT) relies on the interactions between light, photosensitizers, and tissue oxygen to produce cytotoxic reactive oxygen species (ROS), primarily singlet oxygen (1O2) through Type II photochemical reactions, along with superoxide anion radicals (O2•-), hydrogen peroxide (H2O2), and hydroxyl radicals (•OH) through Type I mechanisms. Accurate dosimetry, accounting for all three components, is crucial for predicting and optimizing PDT outcomes. Conventional dosimetry tracks only light fluence rate and photosensitizer concentration, neglecting the role of tissue oxygenation. Reactive oxygen species explicit dosimetry (ROSED) quantifies the reacted oxygen species concentration ([ROS]rx) by explicit measurements of light fluence (rate), photosensitizer concentration, and tissue oxygen concentration. Here we determine tissue oxygenation from non-invasive diffuse correlation spectroscopy (DCS) measurement of tumor blood flow using a conversion factor established preclinically. In this study, we have enrolled 24 pleural PDT patients into the study. Of these patients, we are able to obtain data on 20. Explicit dosimetry of light fluence, Photofrin concentration, and tissue oxygenation concentrations were integrated into the ROSED model to calculate [ROS]rx across multiple sites inside the pleural cavity and among different patients. Large inter- and intra-patient heterogeneities in [ROS]rx were observed, despite identical 60 J/cm2 light doses, with mean [ROS]rx,meas of 0.56 ± 0.26 mM for 13 patients with 21 sites, and [ROS]rx,calc1 of 0.48 ± 0.23 mM for 20 patients with 76 sites. This study presented the first comprehensive analysis of clinical ROSED in pleural mesothelioma patients, providing valuable data on future ROSED based pleural PDT that can potentially produce uniform ROS and thus improve the PDT efficacy for Photofrin-mediated pleural PDT.
Collapse
Affiliation(s)
- Hongjing Sun
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.S.); (Y.O.); (M.M.K.); (A.D.); (K.A.C.)
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yihong Ong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.S.); (Y.O.); (M.M.K.); (A.D.); (K.A.C.)
| | - Michele M. Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.S.); (Y.O.); (M.M.K.); (A.D.); (K.A.C.)
| | - Andreea Dimofte
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.S.); (Y.O.); (M.M.K.); (A.D.); (K.A.C.)
| | - Sunil Singhal
- Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Keith A. Cengel
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.S.); (Y.O.); (M.M.K.); (A.D.); (K.A.C.)
| | - Arjun G. Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Timothy C. Zhu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.S.); (Y.O.); (M.M.K.); (A.D.); (K.A.C.)
| |
Collapse
|
4
|
Obaid G, Celli JP, Broekgaarden M, Bulin AL, Uusimaa P, Pogue B, Hasan T, Huang HC. Engineering photodynamics for treatment, priming and imaging. NATURE REVIEWS BIOENGINEERING 2024; 2:752-769. [PMID: 39927170 PMCID: PMC11801064 DOI: 10.1038/s44222-024-00196-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 02/11/2025]
Abstract
Photodynamic therapy (PDT) is a photochemistry-based treatment approach that relies on the activation of photosensitizers by light to locally generate reactive oxygen species that induce cellular cytotoxicity, in particular for the treatment of tumours. The cytotoxic effects of PDT are depth-limited owing to light penetration limits in tissue. However, photodynamic priming (PDP), which inherently occurs during PDT, can prime the tissue microenvironment to adjuvant therapies beyond the direct PDT ablative zone. In this Review, we discuss the underlying mechanisms of PDT and PDP, and their application to the treatment of cancer, outlining how PDP can permeabilize the tumour vasculature, overcome biological barriers, modulate multidrug resistance, enhance immune responses, increase tumour permeability and enable the photochemical release of drugs. We further examine the molecular engineering of photosensitizers to improve their pharmacodynamic and pharmacokinetic properties, increase their molecular specificity and allow image guidance of PDT, and investigate engineered cellular models for the design and optimization of PDT and PDP. Finally, we discuss alternative activation sources, including ultrasound, X-rays and self-illuminating compounds, and outline key barriers to the clinical translation of PDT and PDP.
Collapse
Affiliation(s)
- Girgis Obaid
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Jonathan P. Celli
- Department of Physics, University of Massachusetts Boston, Boston, MA, USA
| | - Mans Broekgaarden
- Grenoble Alpes University, INSERM U1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France
| | - Anne-Laure Bulin
- Grenoble Alpes University, INSERM U1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France
| | | | - Brian Pogue
- Department of Medical Physics, University of Wisconsin School of Medicine, Madison, WI, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| |
Collapse
|
5
|
Foglar M, Aumiller M, Bochmann K, Buchner A, El Fahim M, Quach S, Sroka R, Stepp H, Thon N, Forbrig R, Rühm A. Interstitial Photodynamic Therapy of Glioblastomas: A Long-Term Follow-up Analysis of Survival and Volumetric MRI Data. Cancers (Basel) 2023; 15:cancers15092603. [PMID: 37174068 PMCID: PMC10177153 DOI: 10.3390/cancers15092603] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND The treatment of glioblastomas, the most common primary malignant brain tumors, with a devastating survival perspective, remains a major challenge in medicine. Among the recently explored therapeutic approaches, 5-aminolevulinic acid (5-ALA)-mediated interstitial photodynamic therapy (iPDT) has shown promising results. METHODS A total of 16 patients suffering from de novo glioblastomas and undergoing iPDT as their primary treatment were retrospectively analyzed regarding survival and the characteristic tissue regions discernible in the MRI data before treatment and during follow-up. These regions were segmented at different stages and were analyzed, especially regarding their relation to survival. RESULTS In comparison to the reference cohorts treated with other therapies, the iPDT cohort showed a significantly prolonged progression-free survival (PFS) and overall survival (OS). A total of 10 of 16 patients experienced prolonged OS (≥ 24 months). The dominant prognosis-affecting factor was the MGMT promoter methylation status (methylated: median PFS of 35.7 months and median OS of 43.9 months) (unmethylated: median PFS of 8.3 months and median OS of 15.0 months) (combined: median PFS of 16.4 months and median OS of 28.0 months). Several parameters with a known prognostic relevance to survival after standard treatment were not found to be relevant to this iPDT cohort, such as the necrosis-tumor ratio, tumor volume, and posttreatment contrast enhancement. After iPDT, a characteristic structure (iPDT remnant) appeared in the MRI data in the former tumor area. CONCLUSIONS In this study, iPDT showed its potential as a treatment option for glioblastomas, with a large fraction of patients having prolonged OS. Parameters of prognostic relevance could be derived from the patient characteristics and MRI data, but they may partially need to be interpreted differently compared to the standard of care.
Collapse
Affiliation(s)
- Marco Foglar
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Maximilian Aumiller
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, 81377 Munich, Germany
- Department of Urology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Katja Bochmann
- Max Planck Institute for Psychiatry, Max Planck Society, 80804 Munich, Germany
- Institute of Neuroradiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Alexander Buchner
- Department of Urology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Mohamed El Fahim
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Stefanie Quach
- Department of Neurosurgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Ronald Sroka
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, 81377 Munich, Germany
- Department of Urology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Herbert Stepp
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, 81377 Munich, Germany
- Department of Urology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Niklas Thon
- Department of Neurosurgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Robert Forbrig
- Institute of Neuroradiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Adrian Rühm
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, 81377 Munich, Germany
- Department of Urology, University Hospital, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
6
|
Wang S, Saeidi T, Lilge L, Betz V. Integrating clinical access limitations into iPDT treatment planning with PDT-SPACE. BIOMEDICAL OPTICS EXPRESS 2023; 14:714-738. [PMID: 36874501 PMCID: PMC9979674 DOI: 10.1364/boe.478217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
PDT-SPACE is an open-source software tool that automates interstitial photodynamic therapy treatment planning by providing patient-specific placement of light sources to destroy a tumor while minimizing healthy tissue damage. This work extends PDT-SPACE in two ways. The first enhancement allows specification of clinical access constraints on light source insertion to avoid penetrating critical structures and to minimize surgical complexity. Constraining fiber access to a single burr hole of adequate size increases healthy tissue damage by 10%. The second enhancement generates an initial placement of light sources as a starting point for refinement, rather than requiring entry of a starting solution by the clinician. This feature improves productivity and also leads to solutions with 4.5% less healthy tissue damage. The two features are used in concert to perform simulations of various surgery options of virtual glioblastoma multiforme brain tumors.
Collapse
Affiliation(s)
- Shuran Wang
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Rd, Toronto, ON M5S3G8, Canada
| | - Tina Saeidi
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G1L7, Canada
| | - Lothar Lilge
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G1L7, Canada
| | - Vaughn Betz
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Rd, Toronto, ON M5S3G8, Canada
| |
Collapse
|
7
|
Beeson K, Parilov E, Potasek M, Zhu T, Sun H, Sourvanos D. Photodynamic therapy in a pleural cavity using monte carlo simulations with 2D/3D Graphical Visualization. GLOBAL JOURNAL OF CANCER THERAPY 2022; 8:34-35. [PMID: 37337581 PMCID: PMC10278094 DOI: 10.17352/2581-5407.000045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Cancer therapy using Photodynamic Therapy (PDT) has been investigated for some time [1,2] and now it is a growing area of interest in clinical trials [3]. Monte Carlo (MC) simulations were used for early laboratory studies [4,5] for analysis in PDT. Various improvements in the MC method have advanced the field in recent years.
Collapse
Affiliation(s)
- K Beeson
- Simphotek, Inc, 211 Warren St, Newark, NJ 07103, USA
| | - E Parilov
- Simphotek, Inc, 211 Warren St, Newark, NJ 07103, USA
| | - Mary Potasek
- Simphotek, Inc, 211 Warren St, Newark, NJ 07103, USA
| | - T Zhu
- Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - H Sun
- Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - D Sourvanos
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Wang S, Dai XY, Ji S, Saeidi T, Schwiegelshohn F, Yassine AA, Lilge L, Betz V. Scalable and accessible personalized photodynamic therapy optimization with FullMonte and PDT-SPACE. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-210358SSRR. [PMID: 35380030 PMCID: PMC8978262 DOI: 10.1117/1.jbo.27.8.083006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/09/2022] [Indexed: 05/08/2023]
Abstract
SIGNIFICANCE Open-source software packages have been extensively used in the past three decades in medical imaging and diagnostics, aiming to study the feasibility of the application ex vivo. Unfortunately, most of the existing open-source tools require some software engineering background to install the prerequisite libraries, choose a suitable computational platform, and combine several software tools to address different applications. AIM To facilitate the use of open-source software in medical applications, enabling computational studies of treatment outcomes prior to the complex in-vivo setting. APPROACH FullMonteWeb, an open-source, user-friendly web-based software with a graphical user interface for interstitial photodynamic therapy (iPDT) modeling, visualization, and optimization, is introduced. The software can perform Monte Carlo simulations of light propagation in biological tissues, along with iPDT plan optimization. FullMonteWeb installs and runs the required software and libraries on Amazon Web Services (AWS), allowing scalable computing without complex set up. RESULTS FullMonteWeb allows simulation of large and small problems on the most appropriate compute hardware, enabling cost improvements of 10 × versus always running on a single platform. Case studies in optical property estimation and diffuser placement optimization highlight FullMonteWeb's versatility. CONCLUSION The FullMonte open source suite enables easier and more cost-effective in-silico studies for iPDT.
Collapse
Affiliation(s)
- Shuran Wang
- University of Toronto, Edward S. Rogers Sr. Department of Electrical and Computer Engineering, Toronto, Ontario, Canada
| | - Xiao Ying Dai
- University of Toronto, Edward S. Rogers Sr. Department of Electrical and Computer Engineering, Toronto, Ontario, Canada
| | - Shengxiang Ji
- University of Toronto, Edward S. Rogers Sr. Department of Electrical and Computer Engineering, Toronto, Ontario, Canada
| | - Tina Saeidi
- University of Toronto, Department of Medical Biophysics, Toronto, Ontario, Canada
| | - Fynn Schwiegelshohn
- University of Toronto, Edward S. Rogers Sr. Department of Electrical and Computer Engineering, Toronto, Ontario, Canada
| | - Abdul-Amir Yassine
- University of Toronto, Edward S. Rogers Sr. Department of Electrical and Computer Engineering, Toronto, Ontario, Canada
- Address all correspondence to Abdul-Amir Yassine,
| | - Lothar Lilge
- University of Toronto, Department of Medical Biophysics, Toronto, Ontario, Canada
- University Health Network, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Vaughn Betz
- University of Toronto, Edward S. Rogers Sr. Department of Electrical and Computer Engineering, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Yassine AA, Lo WCY, Saeidi T, Ferguson D, Whyne CM, Akens MK, Betz V, Lilge L. Photodynamic therapy outcome modelling for patients with spinal metastases: a simulation-based study. Sci Rep 2021; 11:17871. [PMID: 34504208 PMCID: PMC8429418 DOI: 10.1038/s41598-021-97407-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Spinal metastases often occur in the advanced stages of breast, lung or prostate cancer, resulting in a significant impact on the patient's quality of life. Current treatment modalities for spinal metastases include both systemic and localized treatments that aim to decrease pain, improve mobility and structural stability, and control tumour growth. With the development of non-toxic photosensitizer drugs, photodynamic therapy (PDT) has shown promise as a minimally invasive non-thermal alternative in oncology, including for spinal metastases. To apply PDT to spinal metastases, predictive algorithms that optimize tumour treatment and minimize the risk of spinal cord damage are needed to assess the feasibility of the treatment and encourage a broad acceptance of PDT in clinical trials. This work presents a framework for PDT modelling and planning, and simulates the feasibility of using a BPD-MA mediated PDT to treat bone metastases at two different wavelengths (690 nm and 565 nm). An open-source software for PDT planning, PDT-SPACE, is used to evaluate different configurations of light diffusers (cut-end and cylindrical) fibres with optimized power allocation in order to minimize the damage to spinal cord or maximize tumour destruction. The work is simulated on three CT images of metastatically involved vertebrae acquired from three patients with spinal metastases secondary to colorectal or lung cancer. Simulation results show that PDT at a 565 nm wavelength has the ability to treat 90% of the metastatic lesion with less than 17% damage to the spinal cord. However, the energy required, and hence treatment time, to achieve this outcome with the 565 nm is infeasible. The energy required and treatment time for the longer wavelength of 690 nm is feasible ([Formula: see text] min), but treatment aimed at 90% of the metastatic lesion would severely damage the proximal spinal cord. PDT-SPACE provides a simulation platform that can be used to optimize PDT delivery in the metastatic spine. While this work serves as a prospective methodology to analyze the feasibility of PDT for tumour ablation in the spine, preclinical studies in an animal model are ongoing to elucidate the spinal cord damage extent as a function of PDT dose, and the resulting short and long term functional impairments. These will be required before there can be any consideration of clinical trials.
Collapse
Affiliation(s)
- Abdul-Amir Yassine
- grid.17063.330000 0001 2157 2938Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G8 Canada
| | - William C. Y. Lo
- grid.38142.3c000000041936754XHarvard Medical School, Boston, MA 02115 USA ,grid.116068.80000 0001 2341 2786Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, MA 02142 USA
| | - Tina Saeidi
- grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7 Canada
| | - Dallis Ferguson
- grid.17063.330000 0001 2157 2938Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9 Canada ,grid.17063.330000 0001 2157 2938Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, Toronto, ON M4N 3M5 Canada
| | - Cari M. Whyne
- grid.17063.330000 0001 2157 2938Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9 Canada ,grid.17063.330000 0001 2157 2938Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, Toronto, ON M4N 3M5 Canada ,grid.17063.330000 0001 2157 2938Department of Surgery, University of Toronto, Toronto, ON M5G 1L7 Canada ,grid.17063.330000 0001 2157 2938Holland Bone and Joint Research Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5 Canada
| | - Margarete K. Akens
- grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7 Canada ,grid.17063.330000 0001 2157 2938Department of Surgery, University of Toronto, Toronto, ON M5G 1L7 Canada ,grid.231844.80000 0004 0474 0428Techna Institute, University Health Network, Toronto, ON M5T 1P5 Canada
| | - Vaughn Betz
- grid.17063.330000 0001 2157 2938Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G8 Canada
| | - Lothar Lilge
- grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7 Canada ,grid.231844.80000 0004 0474 0428Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7 Canada
| |
Collapse
|
10
|
Yassine AA, Lilge L, Betz V. Machine learning for real-time optical property recovery in interstitial photodynamic therapy: a stimulation-based study. BIOMEDICAL OPTICS EXPRESS 2021; 12:5401-5422. [PMID: 34692191 PMCID: PMC8515975 DOI: 10.1364/boe.431310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 05/24/2023]
Abstract
With the continued development of non-toxic photosensitizer drugs, interstitial photodynamic therapy (iPDT) is showing more favorable outcomes in recent clinical trials. IPDT planning is crucial to further increase the treatment efficacy. However, it remains a major challenge to generate a high-quality, patient-specific plan due to uncertainty in tissue optical properties (OPs), µ a and µ s . These parameters govern how light propagates inside tissues, and any deviation from the planning-assumed values during treatment could significantly affect the treatment outcome. In this work, we increase the robustness of iPDT against OP variations by using machine learning models to recover the patient-specific OPs from light dosimetry measurements and then re-optimizing the diffusers' optical powers to adapt to these OPs in real time. Simulations on virtual brain tumor models show that reoptimizing the power allocation with the recovered OPs significantly reduces uncertainty in the predicted light dosimetry for all tissues involved.
Collapse
Affiliation(s)
- Abdul-Amir Yassine
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Rd, Toronto, ON M5S3G8, Canada
| | - Lothar Lilge
- Princess Margaret Cancer Center, University Health Network, 101 College Street, Toronto, ON M5G1L7, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G1L7, Canada
| | - Vaughn Betz
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Rd, Toronto, ON M5S3G8, Canada
| |
Collapse
|
11
|
Algorri JF, Ochoa M, Roldán-Varona P, Rodríguez-Cobo L, López-Higuera JM. Light Technology for Efficient and Effective Photodynamic Therapy: A Critical Review. Cancers (Basel) 2021; 13:3484. [PMID: 34298707 PMCID: PMC8307713 DOI: 10.3390/cancers13143484] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/17/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
Photodynamic therapy (PDT) is a cancer treatment with strong potential over well-established standard therapies in certain cases. Non-ionising radiation, localisation, possible repeated treatments, and stimulation of immunological response are some of the main beneficial features of PDT. Despite the great potential, its application remains challenging. Limited light penetration depth, non-ideal photosensitisers, complex dosimetry, and complicated implementations in the clinic are some limiting factors hindering the extended use of PDT. To surpass actual technological paradigms, radically new sources, light-based devices, advanced photosensitisers, measurement devices, and innovative application strategies are under extensive investigation. The main aim of this review is to highlight the advantages/pitfalls, technical challenges and opportunities of PDT, with a focus on technologies for light activation of photosensitisers, such as light sources, delivery devices, and systems. In this vein, a broad overview of the current status of superficial, interstitial, and deep PDT modalities-and a critical review of light sources and their effects on the PDT process-are presented. Insight into the technical advancements and remaining challenges of optical sources and light devices is provided from a physical and bioengineering perspective.
Collapse
Affiliation(s)
- José Francisco Algorri
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Mario Ochoa
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Pablo Roldán-Varona
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
| | | | - José Miguel López-Higuera
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
| |
Collapse
|
12
|
Ramadan KT, McFadden C, Gomes B, Schwiegelshohn F, Ribeiro RVP, Chan HHL, Betz V, Cypel M, Lilge L. Determination of Optical Properties and Photodynamic Threshold of Lung Tissue for Treatment Planning of In Vivo Lung Perfusion Assisted Photodynamic Therapy. Photodiagnosis Photodyn Ther 2021; 35:102353. [PMID: 34048969 DOI: 10.1016/j.pdpdt.2021.102353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/03/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Isolated lung metastases in sarcoma and colorectal cancer patients are inadequately treated with current standard therapies. In Vivo Lung Perfusion, a novel platform, could overcome limitations to photodynamic therapy treatment volumes by using low cellular perfusate, removing blood, theoretically allowing greater light penetration. To develop personalized photodynamic therapy protocols requires in silico light propagation simulations based on optical properties and maximal permissible photodynamic threshold dose of lung tissue. This study presents quantification of optical properties for two perfusates and the photodynamic threshold for 5-ALA and Chlorin e6. METHODS Porcine and human lungs were placed on Ex Vivo Lung Perfusion, and perfused with acellular solution or blood. Isotropic diffusers were placed within bronchi and on lung surface for light transmission measurements, from which absorption and light scattering properties were calculated at multiple wavelengths. Separately, pigs were injected with 5-ALA or Chlorin e6, and lung tissue was irradiated at increasing doses. Resultant lesion sizes were measured by CT and histology to quantify the photodynamic threshold. RESULTS Low cellular perfusate reduced the tissue absorption coefficient significantly, increasing penetration depth of light by 3.3 mm and treatment volumes 3-fold. The photodynamic threshold for lung exposed to 5-ALA was consistent with other malignancies. Chlorin e6 levels were undetectable in lung tissue and did not demonstrate photodynamic-induced necrosis. CONCLUSIONS Light penetration with low cellular perfusate is significantly greater and could enable treatments for diffuse disease. This data aids photodynamic treatment planning and will guide clinical translation of photodynamic therapy protocols in the lung, especially during lung perfusion.
Collapse
Affiliation(s)
- Khaled T Ramadan
- University of Toronto, Faculty of Medicine, Department of Surgery, 149 College Street, Toronto M5T 1P5, Ontario, Canada
| | - Christopher McFadden
- University of Toronto, Faculty of Medicine, Department of Medical Biophysics, 101 College Street, Toronto M5G 1L7, Ontario, Canada
| | - Bruno Gomes
- Princess Margaret Cancer Centre, University Health Network, 101 College St, Toronto M5G 2C4, Ontario, Canada
| | - Fynn Schwiegelshohn
- University of Toronto, Faculty of Applied Science and Engineering, Department of Electrical and Computer Engineering, 10 Kings College Road, Toronto M5S 3G4, Ontario, Canada
| | - Rafaela V P Ribeiro
- Princess Margaret Cancer Centre, University Health Network, 101 College St, Toronto M5G 2C4, Ontario, Canada
| | - Harley H L Chan
- Techna Institute, Guided Therapeutics Program, University Health Network, 101 College Street, Toronto M5G 1L7, Ontario, Canada
| | - Vaughn Betz
- University of Toronto, Faculty of Applied Science and Engineering, Department of Electrical and Computer Engineering, 10 Kings College Road, Toronto M5S 3G4, Ontario, Canada
| | - Marcelo Cypel
- University of Toronto, Faculty of Medicine, Department of Surgery, 149 College Street, Toronto M5T 1P5, Ontario, Canada; Princess Margaret Cancer Centre, University Health Network, 101 College St, Toronto M5G 2C4, Ontario, Canada
| | - Lothar Lilge
- University of Toronto, Faculty of Medicine, Department of Medical Biophysics, 101 College Street, Toronto M5G 1L7, Ontario, Canada; Princess Margaret Cancer Centre, University Health Network, 101 College St, Toronto M5G 2C4, Ontario, Canada.
| |
Collapse
|
13
|
Yassine AA, Lilge L, Betz V. Optimizing Interstitial Photodynamic Therapy Planning With Reinforcement Learning-Based Diffuser Placement. IEEE Trans Biomed Eng 2021; 68:1668-1679. [PMID: 33471748 DOI: 10.1109/tbme.2021.3053197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Interstitial photodynamic therapy (iPDT) has shown promising results recently as a minimally invasive stand-alone or intra-operative cancer treatment. The development of non-toxic photosensitizing drugs with improved target selectivity has increased its efficacy. However, personalized treatment planning that determines the number of photon emitters, their positions and their input powers while taking into account tissue anatomy and treatment response is still lacking to further improve outcomes. OBJECTIVE To develop new algorithms that generate high-quality plans by optimizing over the light source positions, along with their powers, to minimize the damage to organs-at-risk while eradicating the tumor. The optimization algorithms should also accurately model the physics of light propagation through the use of Monte-Carlo simulators. METHODS We use simulated-annealing as a baseline algorithm to place the sources. We propose different source perturbations that are likely to provide better outcomes and study their impact. To minimize the number of moves attempted (and effectively runtime) without degrading result quality, we use a reinforcement learning-based method to decide which perturbation strategy to perform in each iteration. We simulate our algorithm on virtual brain tumors modeling real glioblastoma multiforme cases, assuming a 5-ALA PpIX induced photosensitizer that is activated at [Formula: see text] wavelength. RESULTS The algorithm generates plans that achieve an average of 46% less damage to organs-as-risk compared to the manual placement used in current clinical studies. SIGNIFICANCE Having a general and high-quality planning system makes iPDT more effective and applicable to a wider variety of oncological indications. This paves the way for more clinical trials.
Collapse
|
14
|
Lilge L, Manalac A, Weersink M, Schwiegelshohn F, Young-Schultz T, Abdalrhman AS, Wang C, Ngan A, Gu FX, Betz V, Hofmann R. Light propagation within N95 filtered face respirators: A simulation study for UVC decontamination. JOURNAL OF BIOPHOTONICS 2020; 13:e202000232. [PMID: 32888380 DOI: 10.1002/jbio.202000232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 05/24/2023]
Abstract
This study presents numerical simulations of UVC light propagation through seven different filtered face respirators (FFR) to determine their suitability for Ultraviolet germicidal inactivation (UVGI). UV propagation was modeled using the FullMonte program for two external light illuminations. The optical properties of the dominant three layers were determined using the inverse adding doubling method. The resulting fluence rate volume histograms and the lowest fluence rate recorded in the modeled volume, sometimes in the nW cm-2 , provide feedback on a respirator's suitability for UVGI and the required exposure time for a given light source. While UVGI can present an economical approach to extend an FFR's useable lifetime, it requires careful optimization of the illumination setup and selection of appropriate respirators.
Collapse
Affiliation(s)
- Lothar Lilge
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Angelica Manalac
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Madrigal Weersink
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Fynn Schwiegelshohn
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Tanner Young-Schultz
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | | | - Chengjin Wang
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada
| | - Aldrich Ngan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Frank X Gu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Vaughn Betz
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Ron Hofmann
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Using Light for Therapy of Glioblastoma Multiforme (GBM). Brain Sci 2020; 10:brainsci10020075. [PMID: 32024010 PMCID: PMC7071600 DOI: 10.3390/brainsci10020075] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/16/2020] [Accepted: 01/27/2020] [Indexed: 12/22/2022] Open
Abstract
: Glioblastoma multiforme (GBM) is the most malignant form of primary brain tumour with extremely poor prognosis. The current standard of care for newly diagnosed GBM includes maximal surgical resection followed by radiotherapy and adjuvant chemotherapy. The introduction of this protocol has improved overall survival, however recurrence is essentially inevitable. The key reason for that is that the surgical treatment fails to eradicate GBM cells completely, and adjacent parenchyma remains infiltrated by scattered GBM cells which become the source of recurrence. This stimulates interest to any supplementary methods which could help to destroy residual GBM cells and fight the infiltration. Photodynamic therapy (PDT) relies on photo-toxic effects induced by specific molecules (photosensitisers) upon absorption of photons from a light source. Such toxic effects are not specific to a particular molecular fingerprint of GBM, but rather depend on selective accumulation of the photosensitiser inside tumour cells or, perhaps their greater sensitivity to the effects, triggered by light. This gives hope that it might be possible to preferentially damage infiltrating GBM cells within the areas which cannot be surgically removed and further improve the chances of survival if an efficient photosensitiser and hardware for light delivery into the brain tissue are developed. So far, clinical trials with PDT were performed with one specific type of photosensitiser, protoporphyrin IX, which tends to accumulate in the cytoplasm of the GBM cells. In this review we discuss the idea that other types of molecules which build up in mitochondria could be explored as photosensitisers and used for PDT of these aggressive brain tumours.
Collapse
|
16
|
Bungart B, Cao Y, Yang-Tran T, Gorsky S, Lan L, Roblyer D, Koch MO, Cheng L, Masterson T, Cheng JX. Cylindrical illumination with angular coupling for whole-prostate photoacoustic tomography. BIOMEDICAL OPTICS EXPRESS 2019; 10:1405-1419. [PMID: 30891355 PMCID: PMC6420282 DOI: 10.1364/boe.10.001405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 05/20/2023]
Abstract
Current diagnosis of prostate cancer relies on histological analysis of tissue samples acquired by biopsy, which could benefit from real-time identification of suspicious lesions. Photoacoustic tomography has the potential to provide real-time targets for prostate biopsy guidance with chemical selectivity, but light delivered from the rectal cavity has been unable to penetrate to the anterior prostate. To overcome this barrier, a urethral device with cylindrical illumination is developed for whole-prostate imaging, and its performance as a function of angular light coupling is evaluated with a prostate-mimicking phantom.
Collapse
Affiliation(s)
- Brittani Bungart
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907, USA
- Medical Scientist Training Program, Indiana University School of Medicine, 635 Barnhill Drive MS 2031, Indianapolis, IN 46202, USA
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary’s Street, Boston, MA 02215, USA
| | - Yingchun Cao
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary’s Street, Boston, MA 02215, USA
| | - Tiffany Yang-Tran
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Sean Gorsky
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary’s Street, Boston, MA 02215, USA
| | - Lu Lan
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Darren Roblyer
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Michael O. Koch
- Department of Urology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Timothy Masterson
- Department of Urology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary’s Street, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| |
Collapse
|