1
|
Kakkar P, Kakkar T, Nampi PP, Jose G, Saha S. Upconversion nanoparticle-based optical biosensor for early diagnosis of stroke. Biosens Bioelectron 2025; 275:117227. [PMID: 39923527 DOI: 10.1016/j.bios.2025.117227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/28/2024] [Accepted: 02/02/2025] [Indexed: 02/11/2025]
Abstract
Over 17 million people experience a stroke episode annually, with 5.9 million deaths. Stroke is diagnosed by physical tests and neuroimaging which need to be performed quickly to determine if the stroke is caused by ischaemia or haemorrhage. Neuroimaging can reliably confirm bleeding, but many patients with suspected ischaemic stroke (up to 40%) are subsequently confirmed to have alternative pathologies e.g., migraine or seizures (stroke mimics) delaying the transfer of stroke patients to an acute stroke unit for early intervention and treatment. Thus, a simple complimentary blood biomarker test to differentiate stroke patients from non-stroke patients with similar clinical symptoms is essential in prehospital and emergency settings for efficient stroke management and prompt treatment. The current 'Gold Standard' technique for detecting protein biomarkers is complex, time-consuming, and requires automated equipment. In this study, we have developed a proof-of-concept of lanthanide-doped upconversion nanoparticle (UCNP)-based optical biosensor platform for detecting glial fibrillary acidic protein (GFAP), a potential stroke biomarker, in human blood serum. The results show a linear response in photoluminescence quenching of UCNP conjugated GFAP antibody with the increasing concentration of GFAP biomarker in human blood serum. This approach can be used in the ambulance and Emergency Department to quickly diagnose a stroke. In the longer term, such techniques can be integrated into a self-assessment kit to monitor those patients who are at risk after strokes.
Collapse
Affiliation(s)
- Pragati Kakkar
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), Faculty of Medicine and Health, University of Leeds, LS2 9JT, Leeds, United Kingdom.
| | - Tarun Kakkar
- School of Chemical and Process Engineering (SCAPE), University of Leeds, LS2 9JT, Leeds, United Kingdom.
| | - Padmaja Parameswaran Nampi
- School of Chemical and Process Engineering (SCAPE), University of Leeds, LS2 9JT, Leeds, United Kingdom.
| | - Gin Jose
- School of Chemical and Process Engineering (SCAPE), University of Leeds, LS2 9JT, Leeds, United Kingdom.
| | - Sikha Saha
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), Faculty of Medicine and Health, University of Leeds, LS2 9JT, Leeds, United Kingdom.
| |
Collapse
|
2
|
Hendrich JM, White FD, Sykora RE. Lanthanide dicyanoaurate coordination polymers containing 1,10-phenanthroline: Synthesis, structure, and luminescence. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Yang Y, Zhang T, Xing D. Single 808 nm near-infrared-triggered multifunctional upconverting phototheranostic nanocomposite for imaging-guided high-efficiency treatment of tumors. JOURNAL OF BIOPHOTONICS 2021; 14:e202100134. [PMID: 34115430 DOI: 10.1002/jbio.202100134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
Multifunctional phototheranostic nanocomposites are promising for early diagnosis and precision therapy of cancer. Aim to enhance their accuracy and efficiency, in this study, we develop a single-laser excited activatable phototheranostic nanocomposite (UCNPs-D-MQ): 808 nm-excited upconverting nanoparticles (UCNPs) as the matrix programmed assembly with amphipathic compound DSPE-PEG-COOH, a near-infrared absorbing polymer DPP and the pro-photosensitizer MBQB. Upon endocytosed by cancer cells and excited by the 808 nm laser, UCNPs-D-MQ could produce high-yield reactive oxygen species (ROS) as the results of singlet oxygen generation from transferring to methylene blue, GSH depletion and ROS generation from photoactivation. It was proven both in vitro and in vivo that the nanocomposites exhibits remarkable therapeutic efficacy as well as minimal photodamage to normal cells. These results reveal UCNPs-D-MQ as a robust theranostic agent for tumor phototherapy.
Collapse
Affiliation(s)
- Yang Yang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou, China
- College of Biophotonics, South China Normal University, Guangzhou, China
| | - Tao Zhang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou, China
- College of Biophotonics, South China Normal University, Guangzhou, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou, China
- College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
4
|
Nampi PP, Vakurov A, Viswambharan H, Schneider JE, Brydson R, Millner PA, Saha S, Jose G. Barium yttrium fluoride based upconversion nanoparticles as dual mode image contrast agents. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:111937. [PMID: 33947528 DOI: 10.1016/j.msec.2021.111937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 11/11/2020] [Accepted: 01/31/2021] [Indexed: 11/28/2022]
Abstract
Dual labeled contrast agents could provide better complementary information for bioimaging than available solely from a single modality. In this paper we investigate the suitability of Yb3+ and Er3+-doped BaYF5 upconversion nanoparticles (UCNPs) as both optical and X-ray micro computed tomography (μCT) contrast agents. Stable, aqueous UCNP dispersions were synthesised using a hydrothermal method with the addition of polyethyleneimine (PEI). UCNPs were single crystal and had a truncated cuboidal and/or truncated octahedral morphology, with average particle size of 47 ±9 nm from transmission electron microscopy which was further used to characterize the structure and composition in detail. A zeta potential value of +51 mV was measured for the aqueous nanoparticle dispersions which is beneficial for cell permeability. The outer hydrated PEI layer is also advantageous for the attachment of proteins for targeted delivery in biological systems. The prepared UCNPs were proven to be non-toxic to endothelial cells up to a concentration of 3.5 mg/mL, when assessed using an MTT assay. The particles showed intense green upconversion photoluminescence when excited at a wavelength of 976 nm using a diode laser. Quantitative X-ray μCT contrast imaging confirmed the potential of these UCNPs as X-ray contrast agents and confirming their dual modality for bioimaging.
Collapse
Affiliation(s)
- Padmaja Parameswaran Nampi
- School of Chemical and Process Engineering, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom; School of Biomedical Sciences, Faculty of Biological, Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom; Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Alexander Vakurov
- School of Biomedical Sciences, Faculty of Biological, Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Hema Viswambharan
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Jürgen E Schneider
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Rik Brydson
- School of Chemical and Process Engineering, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Paul A Millner
- School of Biomedical Sciences, Faculty of Biological, Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sikha Saha
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Gin Jose
- School of Chemical and Process Engineering, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
5
|
Ramalingam S, Janardhanan Sreeram K, Raghava Rao J. Green light-emitting BSA-conjugated dye supported silica nanoparticles for bio-imaging applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj03848f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BSA conjugated with amine functionalised silica nanoparticles (BSA@DSFN) proved to be an ideal material for long life fluorescent probe for cellular imaging application.
Collapse
Affiliation(s)
- Sathya Ramalingam
- Inorganic and Physical Chemistry Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, India
- Leather Process Technology Department, Central Leather Research Institute, Adyar, Chennai 600 020, India
| | | | - Jonnalagadda Raghava Rao
- Inorganic and Physical Chemistry Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, India
| |
Collapse
|
6
|
MacKenzie LE, Pal R. Circularly polarized lanthanide luminescence for advanced security inks. Nat Rev Chem 2020; 5:109-124. [PMID: 37117607 DOI: 10.1038/s41570-020-00235-4] [Citation(s) in RCA: 234] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2020] [Indexed: 02/07/2023]
Abstract
Authenticating products and documents with security inks is vital to global commerce, security and health. Lanthanide complexes are widely used in luminescent security inks owing to their unique and robust photophysical properties. Lanthanide complexes can also be engineered to undergo circularly polarized luminescence (CPL), which encodes chiral molecular fingerprints in luminescence spectra that cannot be decoded by conventional optical measurements. However, chiral CPL signals have not yet been exploited as an extra security layer in advanced security inks. This Review introduces CPL and related concepts that are necessary to appreciate the challenges and potential of lanthanide-based, CPL-active security inks. We describe recent advances in CPL analysis and read-out technologies that have expedited CPL-active security ink applications. Further, we provide a systematic meta-analysis of strongly CPL-active Euiii, Tbiii, Smiii, Ybiii, Cmiii, Dyiii and Criii complexes, discussing the suitability of their photophysical properties and highlighting promising candidates. We conclude by providing key recommendations for the development and advancement of the field.
Collapse
|