1
|
Skrok MK, Tamborski S, Hepburn MS, Fang Q, Maniewski M, Zdrenka M, Szkulmowski M, Kowalewski A, Szylberg Ł, Kennedy BF. Imaging of prostate micro-architecture using three-dimensional wide-field optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2024; 15:6816-6833. [PMID: 39679405 PMCID: PMC11640564 DOI: 10.1364/boe.537783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 12/17/2024]
Abstract
Prostate cancer is a global health issue that requires new diagnostic methods to provide accurate and precise visualization of prostate tissue on the micro-scale. Such methods have the potential to improve nerve-sparing surgery and to provide image guidance during prostate biopsy. In this feasibility study, we assess the potential of en face three-dimensional wide-field optical coherence tomography (OCT), covering a volumetric imaging field-of-view up to 46 × 46 × 1 mm3, to visualize micro-architecture in 18 freshly excised human prostate specimens. In each case, validation of contrast in OCT images is provided by co-registered wide-field histology images. Using this co-registration, we demonstrate that OCT can distinguish between healthy and cancerous glands at different stages, as well as visualize micro-architecture in the prostate, such as epineurium and perineurium in nerves and the tunica intima and tunica media in blood vessels.
Collapse
Affiliation(s)
- Marta K. Skrok
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, 5 Grudziądzka St., 87-100 Toruń, Poland
| | - Szymon Tamborski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, 5 Grudziądzka St., 87-100 Toruń, Poland
| | - Matt S. Hepburn
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, 5 Grudziądzka St., 87-100 Toruń, Poland
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth 6009, Western Australia, Australia
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Qi Fang
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth 6009, Western Australia, Australia
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Mateusz Maniewski
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum Jan Biziel University Hospital, 75 Ujejskiego St., Bydgoszcz 85-168, Poland
- Department of Tumor Pathology and Pathomorphology, Oncology Centre, Prof Franciszek Łukaszczyk Memorial Hospital, 2 Romanowskiej St., Bydgoszcz 85-796, Poland
| | - Marek Zdrenka
- Department of Tumor Pathology and Pathomorphology, Oncology Centre, Prof Franciszek Łukaszczyk Memorial Hospital, 2 Romanowskiej St., Bydgoszcz 85-796, Poland
| | - Maciej Szkulmowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, 5 Grudziądzka St., 87-100 Toruń, Poland
| | - Adam Kowalewski
- Department of Tumor Pathology and Pathomorphology, Oncology Centre, Prof Franciszek Łukaszczyk Memorial Hospital, 2 Romanowskiej St., Bydgoszcz 85-796, Poland
- Center of Medical Sciences, University of Science and Technology, 7 Kaliskiego St., Bydgoszcz 85-796, Poland
| | - Łukasz Szylberg
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum Jan Biziel University Hospital, 75 Ujejskiego St., Bydgoszcz 85-168, Poland
- Department of Tumor Pathology and Pathomorphology, Oncology Centre, Prof Franciszek Łukaszczyk Memorial Hospital, 2 Romanowskiej St., Bydgoszcz 85-796, Poland
| | - Brendan F. Kennedy
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, 5 Grudziądzka St., 87-100 Toruń, Poland
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth 6009, Western Australia, Australia
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia 6009, Australia
| |
Collapse
|
2
|
Peng N, Xu C, Shen Y, Yuan W, Yang X, Qi C, Qiu H, Gu Y, Chen D. Accurate attenuation characterization in optical coherence tomography using multi-reference phantoms and deep learning. BIOMEDICAL OPTICS EXPRESS 2024; 15:6697-6714. [PMID: 39679392 PMCID: PMC11640581 DOI: 10.1364/boe.543606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 12/17/2024]
Abstract
The optical attenuation coefficient (AC), a crucial tissue parameter indicating the rate of light attenuation within a medium, enables quantitative analysis of tissue properties and facilitates tissue differentiation. Despite its growing clinical significance, accurate quantification of AC from optical coherence tomography (OCT) signals remains a pressing concern. This study comprehensively investigates the factors influencing the accuracy of quantitative AC extraction among existing OCT-based AC extraction algorithms. Subsequently, we propose an approach, the Multi-Reference Phantom Driven Network (MR-Net), which leverages multi-reference phantoms and deep learning to implicitly model factors affecting OCT signal propagation, thereby automatically regressing AC. Using a dataset from Intralipid and silicone-TiO2 phantoms with known AC values obtained from a collimated transmission system and imaged with a 1300 nm swept-source OCT system, we conducted a thorough comparison focusing on data length, out-of-focus distance, and reference phantoms' attenuation among existing OCT-based AC extraction algorithms. By leveraging this extensive dataset, MR-Net can automatically model the complex physical effects in the transmission process of OCT signals, significantly enhancing the accuracy of AC predictions. MR-Net outperforms other algorithms in all metrics, achieving an average relative error of only 10.43% for calculating attenuation samples, significantly lower than the lowest value of 23.72% achieved by other algorithms. This method offers a quantitative framework for disease diagnosis, ultimately contributing to more accurate and effective tissue characterization in clinical settings.
Collapse
Affiliation(s)
- Nian Peng
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Chengli Xu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yi Shen
- Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350117, China
| | - Wu Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Xiaoyu Yang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Changhai Qi
- Department of Pathology, Aerospace Central Hospital, Beijing 100049, China
| | - Haixia Qiu
- Department of Laser Medicine, First Medical Center of PLA General Hospital, Beijing 100853, China
| | - Ying Gu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- Department of Laser Medicine, First Medical Center of PLA General Hospital, Beijing 100853, China
| | - Defu Chen
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
3
|
Mojahed D, Applegate MB, Guo H, Taback B, Ha R, Hibshoosh H, Hendon CP. Optical coherence tomography holds promise to transform the diagnostic anatomic pathology gross evaluation process. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220102GR. [PMID: 36050827 PMCID: PMC9434002 DOI: 10.1117/1.jbo.27.9.096003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
SIGNIFICANCE Real-time histology can close a variety of gaps in tissue diagnostics. Currently, gross pathology analysis of excised tissue is dependent upon visual inspection and palpation to identify regions of interest for histopathological processing. Such analysis is limited by the variable correlation between macroscopic and microscopic findings. The current standard of care is costly, burdensome, and inefficient. AIM We are the first to address this gap by introducing optical coherence tomography (OCT) to be integrated in real-time during the pathology grossing process. APPROACH This is achieved by our high-resolution, ultrahigh-speed, large field-of-view OCT device designed for this clinical application. RESULTS We demonstrate the feasibility of imaging tissue sections from multiple human organs (breast, prostate, lung, and pancreas) in a clinical gross pathology setting without interrupting standard workflows. CONCLUSIONS OCT-based real-time histology evaluation holds promise for addressing a gap that has been present for >100 years.
Collapse
Affiliation(s)
- Diana Mojahed
- Columbia University, Department of Biomedical Engineering, New York, United States
- Columbia University, Department of Electrical Engineering, New York, United States
| | - Matthew B. Applegate
- Columbia University, Department of Electrical Engineering, New York, United States
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Hua Guo
- Columbia University Irving Medical Center, Department of Pathology, New York, United States
| | - Bret Taback
- Columbia University Irving Medical Center, Department of Surgery, New York, United States
| | - Richard Ha
- Columbia University Irving Medical Center, Department of Radiology, New York, United States
| | - Hanina Hibshoosh
- Columbia University Irving Medical Center, Department of Pathology, New York, United States
| | - Christine P. Hendon
- Columbia University, Department of Electrical Engineering, New York, United States
| |
Collapse
|
4
|
Liu HC, Abbasi M, Ding YH, Polley EC, Fitzgerald S, Kadirvel R, Kallmes DF, Brinjikji W, Urban MW. Characterizing thrombus with multiple red blood cell compositions by optical coherence tomography attenuation coefficient. JOURNAL OF BIOPHOTONICS 2021; 14:e202000364. [PMID: 33314731 PMCID: PMC8258800 DOI: 10.1002/jbio.202000364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Embolectomy is one of the emergency procedures performed to remove emboli. Assessing the composition of human blood clots is an important diagnostic factor and could provide guidance for an appropriate treatment strategy for interventional physicians. Immunostaining has been used to identity compositions of clots as a gold-standard procedure, but it is time-consuming and cannot be performed in situ. Here, we proposed that the optical attenuation coefficient of optical coherence tomography (OCT) can be a reliable indicator as a new imaging modality to differentiate clot compositions. Fifteen human blood clots with multiple red blood cell (RBC) compositions from 21% to 95% were prepared using healthy human whole blood. A homogeneous gelatin phantom experiment and numerical simulation based on the Lambert-Beer's law were examined to verify the validity of the attenuation coefficient estimation. The results displayed that optical attenuation coefficients were strongly correlated with RBC compositions. We reported that attenuation coefficients could be a promising biomarker to guide the choice of an appropriate interventional device in a clinical setting and assist in characterizing blood clots.
Collapse
Affiliation(s)
- Hsiao-Chuan Liu
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Mehdi Abbasi
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Yong Hong Ding
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Eric C. Polley
- Health Sciences Research, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Seán Fitzgerald
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- Deptartment of Physiology, National University of Ireland Galway, University Road, Galway, Ireland
| | - Ramanathan Kadirvel
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - David F. Kallmes
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Waleed Brinjikji
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Matthew W. Urban
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| |
Collapse
|
5
|
Placzek F, Micko A, Sentosa R, Fonollà R, Winklehner M, Hosmann A, Andreana M, Höftberger R, Drexler W, Leitgeb RA, Wolfsberger S, Unterhuber A. Towards ultrahigh resolution OCT based endoscopical pituitary gland and adenoma screening: a performance parameter evaluation. BIOMEDICAL OPTICS EXPRESS 2020; 11:7003-7018. [PMID: 33408976 PMCID: PMC7747926 DOI: 10.1364/boe.409987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 05/06/2023]
Abstract
Ultrahigh resolution optical coherence tomography (UHR-OCT) for differentiating pituitary gland versus adenoma tissue has been investigated for the first time, indicating more than 80% accuracy. For biomarker identification, OCT images of paraffin embedded tissue are correlated to histopathological slices. The identified biomarkers are verified on fresh biopsies. Additionally, an approach, based on resolution modified UHR-OCT ex vivo data, investigating optical performance parameters for the realization in an in vivo endoscope is presented and evaluated. The identified morphological features-cell groups with reticulin framework-detectable with UHR-OCT showcase a promising differentiation ability, encouraging endoscopic OCT probe development for in vivo application.
Collapse
Affiliation(s)
- Fabian Placzek
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 4L, 1090 Vienna, Austria
- These authors contributed equally to this work
| | - Alexander Micko
- Department of Neurosurgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- These authors contributed equally to this work
| | - Ryan Sentosa
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 4L, 1090 Vienna, Austria
| | - Roger Fonollà
- Department of Electrical Engineering, Video Coding and Architectures, Eindhoven University of Technology, 5612 AZ Eindhoven, Noord-Brabant, The Netherlands
| | - Michael Winklehner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Arthur Hosmann
- Department of Neurosurgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Marco Andreana
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 4L, 1090 Vienna, Austria
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Wolfgang Drexler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 4L, 1090 Vienna, Austria
| | - Rainer A. Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 4L, 1090 Vienna, Austria
- Christian Doppler Laboratory OPTRAMED, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Stefan Wolfsberger
- Department of Neurosurgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Angelika Unterhuber
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 4L, 1090 Vienna, Austria
| |
Collapse
|
6
|
Swaan A, Muller BG, Wilk LS, Almasian M, Zwartkruis ECH, Rozendaal LR, de Bruin DM, Faber DJ, van Leeuwen TG, van Herk MB. En-face optical coherence tomography for the detection of cancer in prostatectomy specimens: Quantitative analysis in 20 patients. JOURNAL OF BIOPHOTONICS 2020; 13:e201960105. [PMID: 32049426 DOI: 10.1002/jbio.201960105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/10/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
The increase histopathological evaluation of prostatectomy specimens rises the workload on pathologists. Automated histopathology systems, preferably directly on unstained specimens, would accelerate the pathology workflow. In this study, we investigate the potential of quantitative analysis of optical coherence tomography (OCT) to separate benign from malignant prostate tissue automatically. Twenty fixated prostates were cut, from which 54 slices were scanned by OCT. Quantitative OCT metrics (attenuation coefficient, residue, goodness-of-fit) were compared for different tissue types, annotated on the histology slides. To avoid misclassification, the poor-quality slides, and edges of annotations were excluded. Accurate registration of OCT data with histology was achieved in 31 slices. After removing outliers, 56% of the OCT data was compared with histopathology. The quantitative data could not separate malignant from benign tissue. Logistic regression resulted in malignant detection with a sensitivity of 0.80 and a specificity of 0.34. Quantitative OCT analysis should be improved before clinical use.
Collapse
Affiliation(s)
- Abel Swaan
- Department of Urology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Biomedical Engineering and Physics, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Berrend G Muller
- Department of Urology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Leah S Wilk
- Department of Biomedical Engineering and Physics, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mitra Almasian
- Department of Biomedical Engineering and Physics, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Evita C H Zwartkruis
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - L Rence Rozendaal
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Daniel M de Bruin
- Department of Urology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Biomedical Engineering and Physics, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Dirk J Faber
- Department of Biomedical Engineering and Physics, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ton G van Leeuwen
- Department of Biomedical Engineering and Physics, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marcel B van Herk
- Department of Biomedical Engineering and Physics, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Institute of Cancer Sciences, University of Manchester, Manchester, UK
- Department of Radiotherapy Related Research, The Christie NHS Foundation Trust, Manchester, UK
| |
Collapse
|
7
|
Foo KY, Chin L, Zilkens R, Lakhiani DD, Fang Q, Sanderson R, Dessauvagie BF, Latham B, McLaren S, Saunders CM, Kennedy BF. Three-dimensional mapping of the attenuation coefficient in optical coherence tomography to enhance breast tissue microarchitecture contrast. JOURNAL OF BIOPHOTONICS 2020; 13:e201960201. [PMID: 32141243 DOI: 10.1002/jbio.201960201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/16/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Effective intraoperative tumor margin assessment is needed to reduce re-excision rates in breast-conserving surgery (BCS). Mapping the attenuation coefficient in optical coherence tomography (OCT) throughout a sample to create an image (attenuation imaging) is one promising approach. For the first time, three-dimensional OCT attenuation imaging of human breast tissue microarchitecture using a wide-field (up to ~45 × 45 × 3.5 mm) imaging system is demonstrated. Representative results from three mastectomy and one BCS specimen (from 31 specimens) are presented with co-registered postoperative histology. Attenuation imaging is shown to provide substantially improved contrast over OCT, delineating nuanced features within tumors (including necrosis and variations in tumor cell density and growth patterns) and benign features (such as sclerosing adenosis). Additionally, quantitative micro-elastography (QME) images presented alongside OCT and attenuation images show that these techniques provide complementary contrast, suggesting that multimodal imaging could increase tissue identification accuracy and potentially improve tumor margin assessment.
Collapse
Affiliation(s)
- Ken Y Foo
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Crawley, Western Australia, Australia
| | - Lixin Chin
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Crawley, Western Australia, Australia
| | - Renate Zilkens
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, Australia
- Division of Surgery, Medical School, The University of Western Australia, Crawley, Western Australia, Australia
| | - Devina D Lakhiani
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Crawley, Western Australia, Australia
| | - Qi Fang
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Crawley, Western Australia, Australia
| | - Rowan Sanderson
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Crawley, Western Australia, Australia
| | - Benjamin F Dessauvagie
- PathWest, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
- Division of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, Western Australia, Australia
| | - Bruce Latham
- PathWest, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
- The University of Notre Dame, Fremantle, Western Australia, Australia
| | - Sally McLaren
- PathWest Laboratory Medicine WA, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Christobel M Saunders
- Division of Surgery, Medical School, The University of Western Australia, Crawley, Western Australia, Australia
- Breast Centre, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
- Breast Clinic, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Brendan F Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Crawley, Western Australia, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, Western Australia, Australia
| |
Collapse
|
8
|
Gong P, Almasian M, van Soest G, de Bruin DM, van Leeuwen TG, Sampson DD, Faber DJ. Parametric imaging of attenuation by optical coherence tomography: review of models, methods, and clinical translation. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-34. [PMID: 32246615 PMCID: PMC7118361 DOI: 10.1117/1.jbo.25.4.040901] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/28/2020] [Indexed: 05/07/2023]
Abstract
SIGNIFICANCE Optical coherence tomography (OCT) provides cross-sectional and volumetric images of backscattering from biological tissue that reveal the tissue morphology. The strength of the scattering, characterized by an attenuation coefficient, represents an alternative and complementary tissue optical property, which can be characterized by parametric imaging of the OCT attenuation coefficient. Over the last 15 years, a multitude of studies have been reported seeking to advance methods to determine the OCT attenuation coefficient and developing them toward clinical applications. AIM Our review provides an overview of the main models and methods, their assumptions and applicability, together with a survey of preclinical and clinical demonstrations and their translation potential. RESULTS The use of the attenuation coefficient, particularly when presented in the form of parametric en face images, is shown to be applicable in various medical fields. Most studies show the promise of the OCT attenuation coefficient in differentiating between tissues of clinical interest but vary widely in approach. CONCLUSIONS As a future step, a consensus on the model and method used for the determination of the attenuation coefficient is an important precursor to large-scale studies. With our review, we hope to provide a basis for discussion toward establishing this consensus.
Collapse
Affiliation(s)
- Peijun Gong
- The University of Western Australia, Department of Electrical, Electronic and Computer Engineering, Optical+Biomedical Engineering Laboratory, Perth, Western Australia, Australia
- Address all correspondence to Peijun Gong, E-mail:
| | - Mitra Almasian
- University of Amsterdam, Amsterdam University Medical Centers, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| | - Gijs van Soest
- Erasmus MC, University Medical Center Rotterdam, Department of Cardiology, Rotterdam, The Netherlands
| | - Daniel M. de Bruin
- University of Amsterdam, Amsterdam University Medical Centers, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| | - Ton G. van Leeuwen
- University of Amsterdam, Amsterdam University Medical Centers, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| | - David D. Sampson
- The University of Western Australia, Department of Electrical, Electronic and Computer Engineering, Optical+Biomedical Engineering Laboratory, Perth, Western Australia, Australia
- University of Surrey, Surrey Biophotonics, Guildford, Surrey, United Kingdom
| | - Dirk J. Faber
- University of Amsterdam, Amsterdam University Medical Centers, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Zhao J, Winetraub Y, Yuan E, Chan WH, Aasi SZ, Sarin KY, Zohar O, de la Zerda A. Angular compounding for speckle reduction in optical coherence tomography using geometric image registration algorithm and digital focusing. Sci Rep 2020; 10:1893. [PMID: 32024946 PMCID: PMC7002526 DOI: 10.1038/s41598-020-58454-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/15/2020] [Indexed: 11/09/2022] Open
Abstract
Optical coherence tomography (OCT) suffers from speckle noise due to the high spatial coherence of the utilized light source, leading to significant reductions in image quality and diagnostic capabilities. In the past, angular compounding techniques have been applied to suppress speckle noise. However, existing image registration methods usually guarantee pure angular compounding only within a relatively small field of view in the focal region, but produce spatial averaging in the other regions, resulting in resolution loss and image blur. This work develops an image registration model to correctly localize the real-space location of every pixel in an OCT image, for all depths. The registered images captured at different angles are fused into a speckle-reduced composite image. Digital focusing, based on the convolution of the complex OCT images and the conjugate of the point spread function (PSF), is studied to further enhance lateral resolution and contrast. As demonstrated by experiments, angular compounding with our improved image registration techniques and digital focusing, can effectively suppress speckle noise, enhance resolution and contrast, and reveal fine structures in ex-vivo imaged tissue.
Collapse
Affiliation(s)
- Jingjing Zhao
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, 94305, USA
| | - Yonatan Winetraub
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, 94305, USA
- Biophysics Program at Stanford, Stanford, California, 94305, USA
- Molecular Imaging Program at Stanford, Stanford, California, 94305, USA
- The Bio-X Program, Stanford, California, 94305, USA
| | - Edwin Yuan
- Department of Applied Physics, Stanford University, Stanford, California, 94305, USA
| | - Warren H Chan
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, 94305, USA
| | - Sumaira Z Aasi
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, 94305, USA
| | - Kavita Y Sarin
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, 94305, USA
| | - Orr Zohar
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, 94305, USA
| | - Adam de la Zerda
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, 94305, USA.
- Biophysics Program at Stanford, Stanford, California, 94305, USA.
- Molecular Imaging Program at Stanford, Stanford, California, 94305, USA.
- The Bio-X Program, Stanford, California, 94305, USA.
- The Chan Zuckerberg Biohub, San Francisco, California, 94158, USA.
| |
Collapse
|
10
|
Swaan A, Mannaerts CK, Muller BG, van Kollenburg RAA, Lucas M, Savci‐Heijink CD, van Leeuwen TG, de Reijke TM, de Bruin DM. The First In Vivo Needle-Based Optical Coherence Tomography in Human Prostate: A Safety and Feasibility Study. Lasers Surg Med 2019; 51:390-398. [PMID: 31090088 PMCID: PMC6617991 DOI: 10.1002/lsm.23093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To demonstrate the safety and feasibility of clinical in vivo needle-based optical coherence tomography (OCT) imaging of the prostate. MATERIALS AND METHODS Two patients with prostate cancer underwent each two percutaneous in vivo needle-based OCT measurements before transperineal template mapping biopsy. The OCT probe was introduced via a needle and positioned under ultrasound guidance. To test the safety, adverse events were recorded during and after the procedure. To test the feasibility, OCT and US images were studied during and after the procedure. Corresponding regions for OCT and biopsy were determined. A uropathologist evaluated and annotated the histopathology. Three experts assessed all the corresponding OCT images. The OCT and biopsy conclusions for the corresponding regions were compared. RESULTS No adverse events during and following the, in total four, in vivo needle-based OCT measurements were reported. The OCT measurements showed images of prostatic tissue with a penetration depth of ~1.5 mm. The histological-proven tissue types, which were also found in the overlapping OCT images, were benign glands, stroma, glandular atrophy, and adenocarcinoma (Gleason pattern 3). CONCLUSIONS Clinical in vivo needle-based OCT of the prostate is feasible with no adverse events during measurements. OCT images displayed detailed prostatic tissue with a imaging depth up to ~1.5 mm. We could co-register four histological-proven tissue types with OCT images. The feasibility of in vivo OCT in the prostate opens the pathway to the next phase of needle-based OCT studies in the prostate. Lasers Surg. Med. 51:390-398, 2019. © 2019 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Abel Swaan
- Department of Urology, Amsterdam UMCUniversity of AmsterdamMeibergdreef 91105 AZAmsterdamThe Netherlands
- Department of Biomedical Engineering and Physics, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam UMCUniversity of AmsterdamMeibergdreef 91105 AZAmsterdamThe Netherlands
| | - Christophe K. Mannaerts
- Department of Urology, Amsterdam UMCUniversity of AmsterdamMeibergdreef 91105 AZAmsterdamThe Netherlands
| | - Berrend G. Muller
- Department of Urology, Amsterdam UMCUniversity of AmsterdamMeibergdreef 91105 AZAmsterdamThe Netherlands
| | - Rob AA. van Kollenburg
- Department of Urology, Amsterdam UMCUniversity of AmsterdamMeibergdreef 91105 AZAmsterdamThe Netherlands
| | - Marit Lucas
- Department of Biomedical Engineering and Physics, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam UMCUniversity of AmsterdamMeibergdreef 91105 AZAmsterdamThe Netherlands
| | - C Dilara Savci‐Heijink
- Department of Pathology, Amsterdam UMCUniversity of AmsterdamMeibergdreef 91105 AZAmsterdamThe Netherlands
| | - Ton G. van Leeuwen
- Department of Biomedical Engineering and Physics, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam UMCUniversity of AmsterdamMeibergdreef 91105 AZAmsterdamThe Netherlands
| | - Theo M. de Reijke
- Department of Urology, Amsterdam UMCUniversity of AmsterdamMeibergdreef 91105 AZAmsterdamThe Netherlands
| | - Daniel M. de Bruin
- Department of Urology, Amsterdam UMCUniversity of AmsterdamMeibergdreef 91105 AZAmsterdamThe Netherlands
- Department of Biomedical Engineering and Physics, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam UMCUniversity of AmsterdamMeibergdreef 91105 AZAmsterdamThe Netherlands
| |
Collapse
|