1
|
Khan A, Venkatapathi M. Approximations for spherical scattering coefficients with negligible integral errors in parametric space. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2023; 40:932-941. [PMID: 37133190 DOI: 10.1364/josaa.488048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The solution of forward or inverse light scattering problems in astrophysical, biological, and atmospheric sensing applications is typically cost prohibitive for real-time applications. For example, given a probability density for the dimensions, refractive index, and wavelength, evaluating the expected scattering involves an integral over such parameters, and the number of scattering problems solved increases dramatically. In the case of dielectric and weakly absorbing spherical particles (both homogeneous and layered), we begin by highlighting a circular law that restricts scattering coefficients to a circle in the complex plane. Later, the Fraunhofer approximation of Riccati-Bessel functions is used to reduce the scattering coefficients into simpler nested trigonometric approximations. This results in relatively small errors of oscillatory signs that cancel out without a loss of accuracy in the integrals over scattering problems. Thus, the cost of evaluating the two spherical scattering coefficients for any mode is reduced by large factors ≈50, with a larger increase in the speed of the overall computation, as the approximations can be reused for multiple modes. We analyze the errors of the proposed approximation and present numerical results for a set of forward problems as a demonstration.
Collapse
|
2
|
Doh IJ, Zuniga DVS, Shin S, Pruitt RE, Rajwa B, Robinson JP, Bae E. Bacterial Colony Phenotyping with Hyperspectral Elastic Light Scattering Patterns. SENSORS (BASEL, SWITZERLAND) 2023; 23:3485. [PMID: 37050545 PMCID: PMC10098818 DOI: 10.3390/s23073485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
The elastic light-scatter (ELS) technique, which detects and discriminates microbial organisms based on the light-scatter pattern of their colonies, has demonstrated excellent classification accuracy in pathogen screening tasks. The implementation of the multispectral approach has brought further advantages and motivated the design and validation of a hyperspectral elastic light-scatter phenotyping instrument (HESPI). The newly developed instrument consists of a supercontinuum (SC) laser and an acousto-optic tunable filter (AOTF). The use of these two components provided a broad spectrum of excitation light and a rapid selection of the wavelength of interest, which enables the collection of multiple spectral patterns for each colony instead of relying on single band analysis. The performance was validated by classifying microflora of green-leafed vegetables using the hyperspectral ELS patterns of the bacterial colonies. The accuracy ranged from 88.7% to 93.2% when the classification was performed with the scattering pattern created at a wavelength within the 473-709 nm region. When all of the hyperspectral ELS patterns were used, owing to the vastly increased size of the data, feature reduction and selection algorithms were utilized to enhance the robustness and ultimately lessen the complexity of the data collection. A new classification model with the feature reduction process improved the overall classification rate to 95.9%.
Collapse
Affiliation(s)
- Iyll-Joon Doh
- Applied Optics Laboratory, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | | | - Sungho Shin
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Robert E. Pruitt
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Bartek Rajwa
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - J. Paul Robinson
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Euiwon Bae
- Applied Optics Laboratory, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
3
|
Shin S, Dowden B, Doh IJ, Rajwa B, Bae E, Robinson JP. Surface Environment and Energy Density Effects on the Detection and Disinfection of Microorganisms Using a Portable Instrument. SENSORS (BASEL, SWITZERLAND) 2023; 23:2135. [PMID: 36850732 PMCID: PMC9968048 DOI: 10.3390/s23042135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Real-time detection and disinfection of foodborne pathogens are important for preventing foodborne outbreaks and for maintaining a safe environment for consumers. There are numerous methods for the disinfection of hazardous organisms, including heat treatment, chemical reaction, filtration, and irradiation. This report evaluated a portable instrument to validate its simultaneous detection and disinfection capability in typical laboratory situations. In this challenging study, three gram-negative and two gram-positive microorganisms were used. For the detection of contamination, inoculations of various concentrations were dispensed on three different surface types to estimate the performance for minimum-detectable cell concentration. Inoculations higher than 103~104 CFU/mm2 and 0.15 mm of detectable contaminant size were estimated to generate a sufficient level of fluorescence signal. The evaluation of disinfection efficacy was conducted on three distinct types of surfaces, with the energy density of UVC light (275-nm) ranging from 4.5 to 22.5 mJ/cm2 and the exposure time varying from 1 to 5 s. The study determined the optimal energy dose for each of the microorganisms species. In addition, surface characteristics may also be an important factor that results in different inactivation efficacy. These results demonstrate that the proposed portable device could serve as an in-field detection and disinfection unit in various environments, and provide a more efficient and user-friendly way of performing disinfection on large surface areas.
Collapse
Affiliation(s)
- Sungho Shin
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Brianna Dowden
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Iyll-Joon Doh
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Bartek Rajwa
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Euiwon Bae
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - J. Paul Robinson
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Doh IJ, Kim H, Sturgis J, Rajwa B, Robinson JP, Bae E. Optical multi-channel interrogation instrument for bacterial colony characterization. PLoS One 2021; 16:e0247721. [PMID: 33630969 PMCID: PMC7906345 DOI: 10.1371/journal.pone.0247721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/11/2021] [Indexed: 11/18/2022] Open
Abstract
A single instrument that includes multiple optical channels was developed to simultaneously measure various optical and associated biophysical characteristics of a bacterial colony. The multi-channel device can provide five distinct optical features without the need to transfer the sample to multiple locations or instruments. The available measurement channels are bright-field light microscopy, 3-D colony-morphology map, 2-D spatial optical-density distribution, spectral forward-scattering pattern, and spectral optical density. The series of multiple morphological interrogations is beneficial in understanding the bio-optical features of a bacterial colony and the correlations among them, resulting in an enhanced power of phenotypic bacterial discrimination. To enable a one-shot interrogation, a confocal laser scanning module was built as an add-on to an upright microscope. Three different-wavelength diode lasers were used for the spectral analysis, and high-speed pin photodiodes and CMOS sensors were utilized as detectors to measure the spectral OD and light-scatter pattern. The proposed instrument and algorithms were evaluated with four bacterial genera, Escherichia coli, Listeria innocua, Salmonella Typhimurium, and Staphylococcus aureus; their resulting data provided a more complete picture of the optical characterization of bacterial colonies.
Collapse
Affiliation(s)
- Iyll-Joon Doh
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Huisung Kim
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Jennifer Sturgis
- Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Bartek Rajwa
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - J. Paul Robinson
- Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Euiwon Bae
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|