1
|
Song J, Kang J, Kang U, Nam HS, Kim HJ, Kim RH, Kim JW, Yoo H. SNR enhanced high-speed two-photon microscopy using a pulse picker and time gating detection. Sci Rep 2023; 13:14244. [PMID: 37648768 PMCID: PMC10468500 DOI: 10.1038/s41598-023-41270-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023] Open
Abstract
Two-photon microscopy (TPM) is an attractive biomedical imaging method due to its large penetration depth and optical sectioning capability. In particular, label-free autofluorescence imaging offers various advantages for imaging biological samples. However, relatively low intensity of autofluorescence leads to low signal-to-noise ratio (SNR), causing practical challenges for imaging biological samples. In this study, we present TPM using a pulse picker to utilize low pulse repetition rate of femtosecond pulsed laser to increase the pulse peak power of the excitation source leading to higher emission of two-photon fluorescence with the same average illumination power. Stronger autofluorescence emission allowed us to obtain higher SNR images of arterial and liver tissues. In addition, by applying the time gating detection method to the pulse signals obtained by TPM, we were able to significantly reduce the background noise of two-photon images. As a result, our TPM system using the pulsed light source with a 19 times lower repetition rate allowed us to obtain the same SNR image more than 19 times faster with the same average power. Although high pulse energy can increase the photobleaching, we also observed that high-speed imaging with low total illumination energy can mitigate the photobleaching effect to a level similar to that of conventional illumination with a high repetition rate. We anticipate that this simple approach will provide guidance for SNR enhancement with high-speed imaging in TPM as well as other nonlinear microscopy.
Collapse
Affiliation(s)
- Jeonggeun Song
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-Ro, Daejeon, 34141, South Korea
| | - Juehyung Kang
- Department of Biomedical Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Ungyo Kang
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-Ro, Daejeon, 34141, South Korea
| | - Hyeong Soo Nam
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-Ro, Daejeon, 34141, South Korea
| | - Hyun Jung Kim
- Cardiovascular Center, Korea University Guro Hospital, 148 Gurodong-Ro, Seoul, 08308, South Korea
| | - Ryeong Hyeon Kim
- Cardiovascular Center, Korea University Guro Hospital, 148 Gurodong-Ro, Seoul, 08308, South Korea
| | - Jin Won Kim
- Cardiovascular Center, Korea University Guro Hospital, 148 Gurodong-Ro, Seoul, 08308, South Korea
| | - Hongki Yoo
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-Ro, Daejeon, 34141, South Korea.
| |
Collapse
|
2
|
Meng XY, Wang DD, Xie TR, Yang RZ, Liu CF, Liu DH, Li SA, Luan Y, Kang JS. A sensitive mitochondrial thermometry 2.0 and the availability of thermogenic capacity of brown adipocyte. Front Physiol 2022; 13:977431. [PMID: 36091398 PMCID: PMC9449420 DOI: 10.3389/fphys.2022.977431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
The temperature of a living cell is a crucial parameter for cellular events, such as cell division, gene expressions, enzyme activities and metabolism. We previously developed a quantifiable mitochondrial thermometry 1.0 based on rhodamine B methyl ester (RhB-ME) and rhodamine 800 (Rh800), and the theory for mitochondrial thermogenesis. Given that the synthesized RhB-ME is not readily available, thus, a convenient mitochondrial thermometry 2.0 based on tetra-methyl rhodamine methyl ester (TMRM) and Rh800 for the thermogenic study of brown adipocyte was further evolved. The fluorescence of TMRM is more sensitive (∼1.4 times) to temperature than that of RhB-ME, then the TMRM-based mito-thermometry 2.0 was validated and used for the qualitatively dynamic profiles for mitochondrial thermogenic responses and mitochondrial membrane potential in living cells simultaneously. Furthermore, our results demonstrated that the heterogenous thermogenesis evoked by β3 adrenoceptor agonist only used overall up to ∼46% of the thermogenic capacity evoked by CCCP stimulation. On the other hand, the results demonstrated that the maximum thermogenesis evoked by NE and oligomycin A used up to ∼79% of the thermogenic capacity, which suggested the maximum thermogenic capacity under physiological conditions by inhibiting the proton-ATPase function of the mitochondrial complex V, such as under the cold activation of sympathetic nerve and the co-release of sympathetic transmitters.
Collapse
Affiliation(s)
- Xiao-Yan Meng
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Dian-Dian Wang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Tao-Rong Xie
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Run-Zhou Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Dan-Hua Liu
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shu-Ang Li
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Luan
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian-Sheng Kang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Jian-Sheng Kang,
| |
Collapse
|