1
|
Du X, Zhao M, Jiang L, Pang L, Wang J, Lv Y, Yao C, Wu R. A mini-review on gene delivery technique using nanoparticles-mediated photoporation induced by nanosecond pulsed laser. Drug Deliv 2024; 31:2306231. [PMID: 38245895 PMCID: PMC10802807 DOI: 10.1080/10717544.2024.2306231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Nanosecond pulsed laser induced photoporation has gained increasing attention from scholars as an effective method for delivering the membrane-impermeable extracellular materials into living cells. Compared with femtosecond laser, nanosecond laser has the advantage of high throughput and low costs. It also has a higher delivery efficiency than continuous wave laser. Here, we provide an extensive overview of current status of nanosecond pulsed laser induced photoporation, covering the photoporation mechanism as well as various factors that impact the delivery efficiency of photoporation. Additionally, we discuss various techniques for achieving photoporation, such as direct photoporation, nanoparticles-mediated photoporation and plasmonic substrates mediated photoporation. Among these techniques, nanoparticles-mediated photoporation is the most promising approach for potential clinical application. Studies have already been reported to safely destruct the vitreous opacities in vivo by nanosecond laser induced vapor nanobubble. Finally, we discuss the potential of nanosecond laser induced phototoporation for future clinical applications, particularly in the areas of skin and ophthalmic pathologies. We hope this review can inspire scientists to further improve nanosecond laser induced photoporation and facilitate its eventual clinical application.
Collapse
Affiliation(s)
- Xiaofan Du
- National Local Joint Engineering Research Center of Precise Surgery & Regenerative Medicine, Shaanxi Pro-vincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Meng Zhao
- National Local Joint Engineering Research Center of Precise Surgery & Regenerative Medicine, Shaanxi Pro-vincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Le Jiang
- National Local Joint Engineering Research Center of Precise Surgery & Regenerative Medicine, Shaanxi Pro-vincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Lihui Pang
- National Local Joint Engineering Research Center of Precise Surgery & Regenerative Medicine, Shaanxi Pro-vincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Jing Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Yi Lv
- National Local Joint Engineering Research Center of Precise Surgery & Regenerative Medicine, Shaanxi Pro-vincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Cuiping Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center of Precise Surgery & Regenerative Medicine, Shaanxi Pro-vincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| |
Collapse
|
2
|
Takemura S, Mizutani K, Mikami R, Nakagawa K, Hakariya M, Sakaniwa E, Saito N, Kominato H, Kido D, Takeda K, Aoki A, Iwata T. Enhanced periodontal tissue healing via vascular endothelial growth factor expression following low-level erbium-doped: yttrium, aluminum, and garnet laser irradiation: In vitro and in vivo studies. J Periodontol 2024; 95:853-866. [PMID: 38009257 DOI: 10.1002/jper.23-0458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/10/2023] [Accepted: 11/03/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND This study aimed to investigate the effects of low-level erbium-doped: yttrium, aluminum, and garnet (Er:YAG) laser irradiation on periodontal tissue healing and regeneration through angiogenesis in vivo and in vitro studies. METHODS Intrabony defects were surgically created in the bilateral maxilla molar of rats. The defects were treated by open flap debridement (OFD) with Er:YAG laser, including low-level laser irradiation (LLLI) to bone and blood clot surfaces, or conventional procedures. The mRNA expression of vascular endothelial growth factor (VEGF) in the surgical sites was quantified using real-time polymerase chain reaction. The decalcified specimens were prepared for histometric analysis. Also, LLLI was performed on human umbilical vein endothelial cells to evaluate the effects on angiogenesis. Cell proliferation, VEGF expression, and tube formation were assessed. In addition, capsazepine (CPZ), a selective inhibitor of transient receptor potential vanilloid 1 (TRPV1), treatment was performed before LLLI for the same assays. RESULTS OFD using Er:YAG laser did not generate thermal damage on bone or root surfaces. LLLI accelerated hemostasis by coagulation of the superficial layers of blood clots in the laser-treated group. Postoperative healing was sound in all animals in both groups. VEGF expression and bone formation were significantly increased in the laser-treated group compared to those in the conventional treatment group. In vitro, cell proliferation and VEGF expression were significantly increased in the LLLI group compared to the control group. Tube-formation assays showed that LLLI significantly promoted angiogenesis. CPZ treatment significantly suppressed VEGF expression and tube formation following LLLI. CONCLUSIONS This study suggests that Er:YAG laser irradiation may promote periodontal tissue healing by enhancing angiogenetic effect of endothelial cells via TRPV1.
Collapse
Affiliation(s)
- Shu Takemura
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Koji Mizutani
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Risako Mikami
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Keita Nakagawa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Masahiro Hakariya
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Eri Sakaniwa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Natsumi Saito
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Hiromi Kominato
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Daisuke Kido
- Oral Diagnosis and General Dentistry, Tokyo Medical and Dental University Hospital, Bunkyo-ku, Tokyo, Japan
| | - Kohei Takeda
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Akira Aoki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
3
|
McGraw E, Laurent GM, Avila LA. Nanoparticle-mediated photoporation - an emerging versatile physical drug delivery method. NANOSCALE ADVANCES 2024:d4na00122b. [PMID: 39280791 PMCID: PMC11391416 DOI: 10.1039/d4na00122b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/17/2024] [Indexed: 09/18/2024]
Abstract
Facilitating the delivery of impermeable molecules into cells stands as a pivotal step for both basic research and therapeutic delivery. While current methods predominantly use nanoparticles or viral vectors, the exploration of physical phenomena, particularly light-based techniques, remains relatively under-explored. Photoporation, a physical method, employs either pulsed or continuous wave lasers to create transient pores in cell membranes. These openings enable the entry of exogenous, membrane-impermeable molecules into the cytosol while preserving cell viability. Poration can either be achieved directly through focusing a laser beam onto a cell membrane, or indirectly through the addition of sensitizing nanoparticles that interact with the laser pulses. Nanoparticle-mediated photoporation specifically has recently been receiving increasing attention for the high-throughput ability to transfect cells, which also has exciting potential for clinical translation. Here, we begin with a snapshot of the current state of direct and indirect photoporation and the mechanisms that contribute to cell pore formation and molecule delivery. Following this, we present an outline of the evolution of photoporation methodologies for mammalian and non-mammalian cells, accompanied by a description of variations in experimental setups among photoporation systems. Finally, we discuss the potential clinical translation of photoporation and offer our perspective on recent key findings in the field, addressing unmet needs, gaps, and inconsistencies.
Collapse
Affiliation(s)
- Erin McGraw
- Department of Biological Sciences, Auburn University Auburn AL 36849 USA +1-334-844-1639
| | | | - L Adriana Avila
- Department of Biological Sciences, Auburn University Auburn AL 36849 USA +1-334-844-1639
| |
Collapse
|
4
|
Silvestrini AVP, Morais MF, Debiasi BW, Praça FG, Bentley MVLB. Nanotechnology strategies to address challenges in topical and cellular delivery of siRNAs in skin disease therapy. Adv Drug Deliv Rev 2024; 207:115198. [PMID: 38341146 DOI: 10.1016/j.addr.2024.115198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/14/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Gene therapy is one of the most advanced therapies in current medicine. In particular, interference RNA-based therapy by small interfering RNA (siRNA) has gained attention in recent years as it is a highly versatile, selective and specific therapy. In dermatological conditions, topical delivery of siRNA offers numerous therapeutic advantages, mainly by inhibiting the expression of target transcripts directly in the skin. However, crossing the stratum corneum and overcoming intracellular barriers is an inherent challenge. Substantial efforts by scientists have moved towards the use of multimodal and multifunctional nanoparticles to overcome these barriers and achieve greater bioavailability in their site of action, the cytoplasm. In this review the most innovative strategies based on nanoparticle and physical methods are presented, as well as the design principles and the main factors that contribute to the performance of these systems. This review also highlights the synergistic contributions of medicine, nanotechnology, and molecular biology to advancing translational research into siRNA-based therapeutics for skin diseases.
Collapse
Affiliation(s)
- Ana Vitoria Pupo Silvestrini
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Milena Finazzi Morais
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Bryan Wender Debiasi
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Fabíola Garcia Praça
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Maria Vitória Lopes Badra Bentley
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
5
|
Pylaev TE, Avdeeva ES, Khlebtsov BN, Lomova MV, Khlebtsov NG. High-throughput cell optoporation system based on Au nanoparticle layers mediated by resonant irradiation for precise and controllable gene delivery. Sci Rep 2024; 14:3044. [PMID: 38321124 PMCID: PMC10847436 DOI: 10.1038/s41598-024-53126-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
The development of approaches based on genetically modified cells is accompanied by a constant intensive search for new effective and safe delivery systems and the study of existing ones. Recently, we developed a new plasmonic nanoparticle layers-mediated optoporation system that can be proposed for precisely controlled, high-performance laser transfection compatible with broad types of cells and delivered objects of interest. The main goal of the present study is to demonstrate the broad possibilities and advantages of our system for optoporation of several mammalian cells, classified as "easy-to-transfect" cells, namely HeLa and CHO lines, and "hard-to-transfect" cells, namely A431 and RAW 264.7 cells. We show the efficient delivery of various sized cargo molecules: from small molecular dyes propidium iodide (PI) with molecular mass 700 Da, control plasmids (3-10 kb) to fluorophore-labeled dextranes with masses ranging from 10 kDa up to 100 kDa. The performance of optoporation was investigated for two types of laser sources, 800-nm continuous-wave laser, and 1064-nm ns pulsed laser. We provided a comparative study between our system and commercial agent Lipofectamine for transient transfection and stable transfection of HeLa cells with plasmids encoding fluorescent proteins. The quantitative data analysis using flow cytometry, Alamar blue viability assay, and direct fluorescence microscopy revealed higher optoporation efficacy for hard-to-transfect A431 cells and Raw 264.7 cells than lipofection efficacy. Finally, we demonstrated the optoporation performance at the single-cell level by successful delivering PI to the individual CHO cells with revealed high viability for at least 72 h post-irradiation.
Collapse
Affiliation(s)
- T E Pylaev
- Saratov Medical State University N.a. V.I. Razumovsky, 112 Ulitsa Bolshaya Kazachya, Saratov, Russia, 410012.
- Institute of Biochemistry and Physiology of Plants and Microorganisms - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences, 13 Prospect Entuziastov, Saratov, Russia, 410049.
- Saratov National Research State University, 83 Ulitsa Astrakhanskaya, Saratov, Russia, 410012.
| | - E S Avdeeva
- Saratov Medical State University N.a. V.I. Razumovsky, 112 Ulitsa Bolshaya Kazachya, Saratov, Russia, 410012
- Institute of Biochemistry and Physiology of Plants and Microorganisms - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences, 13 Prospect Entuziastov, Saratov, Russia, 410049
| | - B N Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences, 13 Prospect Entuziastov, Saratov, Russia, 410049
| | - M V Lomova
- Saratov National Research State University, 83 Ulitsa Astrakhanskaya, Saratov, Russia, 410012
| | - N G Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences, 13 Prospect Entuziastov, Saratov, Russia, 410049
- Saratov National Research State University, 83 Ulitsa Astrakhanskaya, Saratov, Russia, 410012
| |
Collapse
|
6
|
Maphanga C, Manoto S, Mabena C, Ombinda-Lemboumba S, Maaza M, Mthunzi-Kufa P. Laser-enabled delivery of antiretroviral drugs into HIV-1 infected TZM-bl cells. JOURNAL OF BIOPHOTONICS 2022; 15:e202200043. [PMID: 35852044 DOI: 10.1002/jbio.202200043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
The use of femtosecond laser to create sub-microscopic transient pores on the cell membrane allowing exogenous material into mammalian cells has become a very efficient optical delivery method over the past decade. This study focuses on laser-enabled delivery of antiretroviral (ARV) drugs into HIV-1 infected TZM-bl cells in vitro. A 1 kHz femtosecond laser emitting at a wavelength of 800 nm was used to photoporate cells at 6.5 μW. Trypan blue was used for characterisation and its uptake was quantified using Matlab software. Cell membrane damage was assessed using the lactate dehydrogenase (LDH) assay while HIV-1 infection was assessed using luciferase assay. Our results showed successful delivery of ARVs into HIV-1 infected cells without compromising their cell membranes, subsequently reducing the level of infection. The LDH assay showed no significant cell membrane damage of laser-treated cells, and the luciferase assay demonstrated significant reduction in the level of HIV-1 infection.
Collapse
Affiliation(s)
- Charles Maphanga
- National Laser Centre, Council for Scientific and Industrial Research, Pretoria, South Africa
- Department of Physics, NB Pityana Building, University of South Africa, Science Campus, Florida, South Africa
| | - Sello Manoto
- National Laser Centre, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Chemist Mabena
- National Laser Centre, Council for Scientific and Industrial Research, Pretoria, South Africa
| | | | - Malik Maaza
- National Laser Centre, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Patience Mthunzi-Kufa
- National Laser Centre, Council for Scientific and Industrial Research, Pretoria, South Africa
- College of Agriculture, Engineering and Science, School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| |
Collapse
|
7
|
Garner AL, Neculaes B, Dylov DV. Infrared Laser-Based Single Cell Permeabilization by Plasma Membrane Temperature Gradients. MEMBRANES 2022; 12:membranes12060574. [PMID: 35736281 PMCID: PMC9227360 DOI: 10.3390/membranes12060574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 01/27/2023]
Abstract
Single cell microinjection provides precise tuning of the volume and timing of delivery into the treated cells; however, it also introduces workflow complexity that requires highly skilled operators and specialized equipment. Laser-based microinjection provides an alternative method for targeting a single cell using a common laser and a workflow that may be readily standardized. This paper presents experiments using a 1550 nm, 100 fs pulse duration laser with a repetition rate of 20 ns for laser-based microinjection and calculations of the hypothesized physical mechanism responsible for the experimentally observed permeabilization. Chinese Hamster Ovarian (CHO) cells exposed to this laser underwent propidium iodide uptake, demonstrating the potential for selective cell permeabilization. The agreement between the experimental conditions and the electropermeabilization threshold based on estimated changes in the transmembrane potential induced by a laser-induced plasma membrane temperature gradient, even without accounting for enhancement due to traditional electroporation, strengthens the hypothesis of this mechanism for the experimental observations. Compared to standard 800 nm lasers, 1550 nm fs lasers may ultimately provide a lower cost microinjection method that readily interfaces with a microscope and is agnostic to operator skill, while inducing fewer deleterious effects (e.g., temperature rise, shockwaves, and cavitation bubbles).
Collapse
Affiliation(s)
- Allen L. Garner
- School of Nuclear Engineering, Purdue University, West Lafayette, IN 47906, USA
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Correspondence: (A.L.G.); (B.N.)
| | - Bogdan Neculaes
- GE Research, Niskayuna, NY 12309, USA;
- Correspondence: (A.L.G.); (B.N.)
| | | |
Collapse
|
8
|
Nasseri B, Alizadeh E, Bani F, Davaran S, Akbarzadeh A, Rabiee N, Bahadori A, Ziaei M, Bagherzadeh M, Saeb MR, Mozafari M, Hamblin MR. Nanomaterials for photothermal and photodynamic cancer therapy. APPLIED PHYSICS REVIEWS 2022; 9. [DOI: 10.1063/5.0047672] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
Abstract
In recent years, the role of optically sensitive nanomaterials has become powerful moieties in therapeutic techniques and has become particularly emphasized. Currently, by the extraordinary development of nanomaterials in different fields of medicine, they have found new applications. Phototherapy modalities, such as photothermal therapy (PTT) by toxic heat generation and photodynamic therapy (PDT) by reactive oxygen species, are known as promising phototherapeutic techniques, which can overcome the limitations of conventional protocols. Moreover, nanomaterial-based PDT and PTT match the simultaneous immune therapy and increase the immune system stimulation resulting from the denaturation of cancer cells. Nevertheless, nanomaterials should have sufficient biocompatibility and efficiency to meet PDT and PTT requirements as therapeutic agents. The present review focuses on the therapeutic potency of PDT, PTT, and also their combined modalities, which are known alternative protocols with minimal morbidity integrated into gold standard treatments such as surgery, chemotherapy, and radiation therapy at tumor treatment and cancer-related infectious diseases. In addition, for deeper understanding, photoablation effects with emphasis on the nature, morphology, and size of photosensitive nanomaterials in PDT and PTT were studied. Finally, transportation techniques and moieties needed as carriers of photosensitizers and photothermal therapy agents to hard-accessed regions, for example, cancerous regions, were investigated.
Collapse
Affiliation(s)
- Behzad Nasseri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences 1 , Tabriz, Iran
- Department of Nanomedicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences 2 , Tabriz, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences 1 , Tabriz, Iran
| | - Farhad Bani
- Department of Nanomedicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences 2 , Tabriz, Iran
- Drug Applied Research Center 3 , Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Davaran
- Drug Applied Research Center 3 , Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Department of Nanomedicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences 2 , Tabriz, Iran
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology 4 , P.O. Box 11155-9161, Tehran, Iran
- School of Engineering, Macquarie University 5 , Sydney, New South Wales 2109, Australia
| | - Ali Bahadori
- Department of Medical Microbiology, Sarab Faculty of Medical School 6 , Sarab, Iran
| | - Mojtaba Ziaei
- Medicinal Plants Research Center, Maragheh University of Medical Sciences 7 , Maragheh, Iran
| | | | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology 9 , G. Narutowicza 11/12 80-233, Gdańsk, Poland
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Iran University of Medical Sciences 10 , Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg 11 , Doornfontein 2028, South Africa
- Wellman Center for Photomedicine, Massachusetts General Hospital 12 , Boston, Massachusetts 02114, USA
- Department of Dermatology, Harvard Medical School 13 , Boston, Massachusetts 02115, USA
| |
Collapse
|
9
|
Nanotechnology-Based Strategies to Overcome Current Barriers in Gene Delivery. Int J Mol Sci 2021; 22:ijms22168537. [PMID: 34445243 PMCID: PMC8395193 DOI: 10.3390/ijms22168537] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
Nanomaterials are currently being developed for the specific cell/tissue/organ delivery of genetic material. Nanomaterials are considered as non-viral vectors for gene therapy use. However, there are several requirements for developing a device small enough to become an efficient gene-delivery tool. Considering that the non-viral vectors tested so far show very low efficiency of gene delivery, there is a need to develop nanotechnology-based strategies to overcome current barriers in gene delivery. Selected nanostructures can incorporate several genetic materials, such as plasmid DNA, mRNA, and siRNA. In the field of nanotechnologies, there are still some limitations yet to be resolved for their use as gene delivery systems, such as potential toxicity and low transfection efficiency. Undeniably, novel properties at the nanoscale are essential to overcome these limitations. In this paper, we will explore the latest advances in nanotechnology in the gene delivery field.
Collapse
|