1
|
Morizet J, Chow D, Wijesinghe P, Schartner E, Dwapanyin G, Dubost N, Bruce GD, Anckaert E, Dunning K, Dholakia K. UVA Hyperspectral Light-Sheet Microscopy for Volumetric Metabolic Imaging: Application to Preimplantation Embryo Development. ACS PHOTONICS 2023; 10:4177-4187. [PMID: 38145166 PMCID: PMC10739996 DOI: 10.1021/acsphotonics.3c00900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 12/26/2023]
Abstract
Cellular metabolism is a key regulator of energetics, cell growth, regeneration, and homeostasis. Spatially mapping the heterogeneity of cellular metabolic activity is of great importance for unraveling the overall cell and tissue health. In this regard, imaging the endogenous metabolic cofactors, nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavin adenine dinucleotide (FAD), with subcellular resolution and in a noninvasive manner would be useful to determine tissue and cell viability in a clinical environment, but practical use is limited by current imaging techniques. In this paper, we demonstrate the use of phasor-based hyperspectral light-sheet (HS-LS) microscopy using a single UVA excitation wavelength as a route to mapping metabolism in three dimensions. We show that excitation solely at a UVA wavelength of 375 nm can simultaneously excite NAD(P)H and FAD autofluorescence, while their relative contributions can be readily quantified using a hardware-based spectral phasor analysis. We demonstrate the potential of our HS-LS system by capturing dynamic changes in metabolic activity during preimplantation embryo development. To validate our approach, we delineate metabolic changes during preimplantation embryo development from volumetric maps of metabolic activity. Importantly, our approach overcomes the need for multiple excitation wavelengths, two-photon imaging, or significant postprocessing of data, paving the way toward clinical translation, such as in situ, noninvasive assessment of embryo viability.
Collapse
Affiliation(s)
- Josephine Morizet
- SUPA,
School of Physics and Astronomy, University
of St Andrews, North Haugh, St Andrews Fife KY16, U.K.
| | - Darren Chow
- Robinson
Research Institute, School of Biomedicine, The University of Adelaide, Adelaide 5501, Australia
- Australian
Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide 5505, Australia
- Institute
for Photonics and Advanced Sensing, The
University of Adelaide, Adelaide 5505, Australia
| | - Philip Wijesinghe
- SUPA,
School of Physics and Astronomy, University
of St Andrews, North Haugh, St Andrews Fife KY16, U.K.
| | - Erik Schartner
- Robinson
Research Institute, School of Biomedicine, The University of Adelaide, Adelaide 5501, Australia
- Institute
for Photonics and Advanced Sensing, The
University of Adelaide, Adelaide 5505, Australia
- Centre
of Light for Life, The University of Adelaide, Adelaide 5005, Australia
| | - George Dwapanyin
- SUPA,
School of Physics and Astronomy, University
of St Andrews, North Haugh, St Andrews Fife KY16, U.K.
| | - Nicolas Dubost
- SUPA,
School of Physics and Astronomy, University
of St Andrews, North Haugh, St Andrews Fife KY16, U.K.
| | - Graham D. Bruce
- SUPA,
School of Physics and Astronomy, University
of St Andrews, North Haugh, St Andrews Fife KY16, U.K.
| | - Ellen Anckaert
- Faculty of
Medicine and Pharmacy, Vrije Universiteit
Brussel, Brussels 1070, Belgium
| | - Kylie Dunning
- Robinson
Research Institute, School of Biomedicine, The University of Adelaide, Adelaide 5501, Australia
- Australian
Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide 5505, Australia
- Institute
for Photonics and Advanced Sensing, The
University of Adelaide, Adelaide 5505, Australia
| | - Kishan Dholakia
- SUPA,
School of Physics and Astronomy, University
of St Andrews, North Haugh, St Andrews Fife KY16, U.K.
- Centre
of Light for Life, The University of Adelaide, Adelaide 5005, Australia
- School
of Biological Sciences, The University of
Adelaide, Adelaide 5005, Australia
| |
Collapse
|
2
|
Development of an Endoscopic Auto-Fluorescent Sensing Device to Aid in the Detection of Breast Cancer and Inform Photodynamic Therapy. Metabolites 2022; 12:metabo12111097. [PMID: 36422237 PMCID: PMC9697641 DOI: 10.3390/metabo12111097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the most diagnosed cancer type in women, with it being the second most deadly cancer in terms of total yearly mortality. Due to the prevalence of this disease, better methods are needed for both detection and treatment. Reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) are autofluorescent biomarkers that lend insight into cell and tissue metabolism. As such, we developed an endoscopic device to measure these metabolites in tissue to differentiate between malignant tumors and normal tissue. We performed initial validations in liquid phantoms as well as compared to a previously validated redox imaging system. We also imaged ex vivo tissue samples after modulation with carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) and a combination of rotenone and antimycin A. We then imaged the rim and the core of MDA-MB-231 breast cancer tumors, with our results showing that the core of a cancerous lesion has a significantly higher optical redox ratio ([FAD]/([FAD] + [NADH])) than the rim, which agrees with previously published results. The mouse muscle tissues exhibited a significantly lower FAD, higher NADH, and lower redox ratio compared to the tumor core or rim. We also used the endoscope to measure NADH and FAD after photodynamic therapy treatment, a light-activated treatment methodology. Our results found that the NADH signal increases in the malignancy rim and core, while the core of cancers demonstrated a significant increase in the FAD signal.
Collapse
|