1
|
Rodimova S, Gubarkova E, Bobrov N, Shchechkin I, Kozlova V, Zolotova N, Potapov A, Kiseleva E, Gelikonov G, Gladkova N, Zagainov V, Zagaynova E, Kuznetsova D. Optical Coherence Tomography Angiography, Elastography, and Attenuation Imaging for Evaluation of Liver Regeneration. Diagnostics (Basel) 2025; 15:977. [PMID: 40310384 PMCID: PMC12025902 DOI: 10.3390/diagnostics15080977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 05/02/2025] Open
Abstract
Background/Objectives: As a result of metabolic changes and the disruption of tissue architecture and microcirculation, the regenerative potential of the liver decreases with violations at both micro and macro levels. The development of intraoperative approaches for assessing its regenerative potential is important for reducing the risk of the occurrence of post-resection liver failure. In this study, we used multimodal optical coherence tomography (MM OCT), a combination of three optical coherence tomography modalities-OCT-angiography (OCTA), attenuation coefficient mapping, and OCT-elastography (OCE) to provide real-time three-dimensional and label-free assessment of changes in microcirculation, and in the structure and stiffness of the liver during regeneration. Methods: In our study, the regeneration of a healthy liver was induced by 70% partial hepatectomy. Monitoring of changes was carried out on the 0 (normal liver), 3rd and 7th day of regeneration using modalities of MM OCT. OCT offers the benefits of higher resolution and specificity compared with other clinical imaging modalities, and can be used, even intraoperatively. Results: By the 3rd day of liver regeneration, a decreased density of all observable vessels, together with increased values of the liver tissue's attenuation coefficient and stiffness, was revealed compared to their initial state. However, by the 7th day, the studied parameters tended to return to their normal values, except that the density of large-caliber vessels continued to increase further. Histological and biochemical blood analysis methods were used to verify the MM OCT data. Conclusions: Such data are a first step towards further investigation of liver regeneration in pathology, and, taken in perspective, this should serve as a basis for predictive intraoperative assessment of the regenerative potential of the liver in a clinical setting.
Collapse
Affiliation(s)
- Svetlana Rodimova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky sq., 603000 Nizhny Novgorod, Russia; (E.G.); (D.K.)
| | - Ekaterina Gubarkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky sq., 603000 Nizhny Novgorod, Russia; (E.G.); (D.K.)
| | - Nikolai Bobrov
- The Volga District Medical Centre of Federal Medical and Biological Agency, 14 Ilinskaya St., 603000 Nizhny Novgorod, Russia
| | - Ilya Shchechkin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky sq., 603000 Nizhny Novgorod, Russia; (E.G.); (D.K.)
- Institute of Biology and Biomedicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Vera Kozlova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky sq., 603000 Nizhny Novgorod, Russia; (E.G.); (D.K.)
- The Volga District Medical Centre of Federal Medical and Biological Agency, 14 Ilinskaya St., 603000 Nizhny Novgorod, Russia
| | - Natalia Zolotova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky sq., 603000 Nizhny Novgorod, Russia; (E.G.); (D.K.)
| | - Arseniy Potapov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky sq., 603000 Nizhny Novgorod, Russia; (E.G.); (D.K.)
| | - Elena Kiseleva
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky sq., 603000 Nizhny Novgorod, Russia; (E.G.); (D.K.)
| | - Grigory Gelikonov
- A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanova Street, 603950 Nizhny Novgorod, Russia
| | - Natalia Gladkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky sq., 603000 Nizhny Novgorod, Russia; (E.G.); (D.K.)
| | - Vladimir Zagainov
- Nizhny Novgorod Regional Clinical Oncologic Dispensary, Delovaya St., 11/1, 603126 Nizhny Novgorod, Russia
| | - Elena Zagaynova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky sq., 603000 Nizhny Novgorod, Russia; (E.G.); (D.K.)
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya St., 119435 Moscow, Russia
| | - Daria Kuznetsova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky sq., 603000 Nizhny Novgorod, Russia; (E.G.); (D.K.)
- Laboratory of Omics and Regenerative Technologies, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., 119991 Moscow, Russia
| |
Collapse
|
2
|
Achkasova KA, Kiseleva EB, Potapov AL, Kukhnina LS, Moiseev AA, Yashin KS, Polozova AV, Komarova AD, Gladkova ND. Attenuation coefficient as a tool to detect changes in the white matter of the rat brain caused by different types of gliomas and irradiation. BIOMEDICAL OPTICS EXPRESS 2024; 15:6136-6155. [PMID: 39553861 PMCID: PMC11563340 DOI: 10.1364/boe.533903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/15/2024] [Accepted: 09/05/2024] [Indexed: 11/19/2024]
Abstract
In the present work, we carried out a comparative study of the attenuation coefficient of the white matter of the rat brain during the growth of glial tumors characterized by different degrees of malignancy (glioblastoma 101/8, astrocytoma 10-17-2, glioma C6) and during irradiation. We demonstrated that some tumor models cause a pronounced decrease in white matter attenuation coefficient values due to infiltration of tumor cells, myelinated fiber destruction, and edema. In contrast, other tumors cause compression of the myelinated fibers of the corpus callosum without their ruptures and prominent invasion of tumor cells, which preserved the attenuation coefficient values changeless. In addition, for the first time, the possibility of using the attenuation coefficient to detect late radiation-induced changes in white matter characterized by focal development of edema, disruption of the integrity of myelinated fibers, and a decrease in the amount of oligodendrocytes and differentiation of these areas from tumor tissue and healthy white matter has been demonstrated. The results indicate the promise of using the attenuation coefficient estimated from OCT data for in vivo assessment of the degree of destruction of peritumoral white matter or its compression, which makes this method useful not only in primary resections but also in repeated surgical interventions for recurrent tumors.
Collapse
Affiliation(s)
- Ksenia A. Achkasova
- Privolzhsky Research Medical University, 603950, 10/1, Minin and Pozharsky sq., Nizhny Novgorod, Russia
- National Research Lobachevsky State University of Nizhny Novgorod, 603022, 23, Gagarin Av., Nizhny Novgorod, Russia
| | - Elena B. Kiseleva
- Privolzhsky Research Medical University, 603950, 10/1, Minin and Pozharsky sq., Nizhny Novgorod, Russia
| | - Arseniy L. Potapov
- Privolzhsky Research Medical University, 603950, 10/1, Minin and Pozharsky sq., Nizhny Novgorod, Russia
| | - Liudmila S. Kukhnina
- Privolzhsky Research Medical University, 603950, 10/1, Minin and Pozharsky sq., Nizhny Novgorod, Russia
| | - Alexander A. Moiseev
- Institute of Applied Physics Russian Academy of Sciences, 603155, 46, Ulyanova str., Nizhny Novgorod, Russia
| | - Konstantin S. Yashin
- Privolzhsky Research Medical University, 603950, 10/1, Minin and Pozharsky sq., Nizhny Novgorod, Russia
| | - Anastasia V. Polozova
- Privolzhsky Research Medical University, 603950, 10/1, Minin and Pozharsky sq., Nizhny Novgorod, Russia
- National Research Lobachevsky State University of Nizhny Novgorod, 603022, 23, Gagarin Av., Nizhny Novgorod, Russia
| | - Anastasia D. Komarova
- Privolzhsky Research Medical University, 603950, 10/1, Minin and Pozharsky sq., Nizhny Novgorod, Russia
- National Research Lobachevsky State University of Nizhny Novgorod, 603022, 23, Gagarin Av., Nizhny Novgorod, Russia
| | - Natalia D. Gladkova
- Privolzhsky Research Medical University, 603950, 10/1, Minin and Pozharsky sq., Nizhny Novgorod, Russia
| |
Collapse
|
3
|
Plekhanov AA, Grechkanev GO, Avetisyan EA, Loginova MM, Kiseleva EB, Shepeleva AA, Moiseev AA, Sovetsky AA, Gubarkova EV, Anina AA, Shutova AM, Gamayunov SV, Gelikonov GV, Zaitsev VY, Sirotkina MA, Gladkova ND. Quantitative Assessment of Polarization and Elastic Properties of Endometrial Tissue for Precancer/Cancer Diagnostics Using Multimodal Optical Coherence Tomography. Diagnostics (Basel) 2024; 14:2131. [PMID: 39410535 PMCID: PMC11475316 DOI: 10.3390/diagnostics14192131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Objectives: The most important phase in the endometrial pathologies diagnostics is the histological examination of tissue biopsies obtained under visual hysteroscopic control. However, the unclear visual diagnostics characteristics of subtle focal endometrial pathologies often lead to selection errors regarding suspicious endometrial lesions and to a subsequent false pathological diagnosis/underestimation of precancer or early-stage cancer. Methods: In this study, we investigate the potential of Multimodal Optical Coherence Tomography (MM OCT) to verify suspicious endometrial lesion regions before biopsy collection. We study the polarization (by cross-polarization OCT, CP OCT) and elastic (by compression OCT-elastography, C-OCE) properties of ex vivo endometrial tissue samples in normal conditions (proliferative and secretory phases to the menstrual cycle, atrophic endometrium) with endometrial hyperplasia (non-atypical and endometrial intraepithelial neoplasia) and endometrial cancer subtypes (low-grade, high-grade, clear cell and serous). Results: To the best of our knowledge, this is the first quantitative assessment of relevant OCT parameters (depth-resolved attenuation coefficient in co-[Att(co) values] and cross-[(Att(cross) values] polarizations and Young's elastic modulus [stiffness values]) for the selection of the most objective criteria to identify the clinically significant endometrial pathologies: endometrial intraepithelial neoplasia and endometrial cancer. The study demonstrates the possibility of detecting endometrial pathologies and establishing optimal threshold values of MM OCT criteria for the identification of endometrial cancer using CP OCT (by Att(co) values = 3.69 mm-1, Sensitivity (Se) = 86.1%, Specificity (Sp) = 92.6%; by Att(cross) values = 2.27 mm-1, Se = 86.8%, Sp = 87.0%) and C-OCE (by stiffness values = 122 kPa, Se = 93.2%, Sp = 91.1%). The study also differentiates endometrial intraepithelial neoplasia from non-atypical endometrial hyperplasia and normal endometrium using C-OCE (by stiffness values = 95 kPa, Se = 87.2%, Sp = 90.1%). Conclusions: The results are indicative of the efficacy and potential of clinical implementation of in vivo hysteroscopic-like MM OCT in the diagnosis of endometrial pathologies.
Collapse
Affiliation(s)
- Anton A. Plekhanov
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603950 Nizhny Novgorod, Russia; (G.O.G.); (M.M.L.); (E.B.K.); (E.V.G.); (A.A.A.); (A.M.S.); (M.A.S.); (N.D.G.)
| | - Gennady O. Grechkanev
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603950 Nizhny Novgorod, Russia; (G.O.G.); (M.M.L.); (E.B.K.); (E.V.G.); (A.A.A.); (A.M.S.); (M.A.S.); (N.D.G.)
| | - Elena A. Avetisyan
- Nizhny Novgorod Regional Oncological Hospital, 11/1 Delovaya St., 603093 Nizhny Novgorod, Russia; (E.A.A.); (A.A.S.); (S.V.G.)
| | - Maria M. Loginova
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603950 Nizhny Novgorod, Russia; (G.O.G.); (M.M.L.); (E.B.K.); (E.V.G.); (A.A.A.); (A.M.S.); (M.A.S.); (N.D.G.)
| | - Elena B. Kiseleva
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603950 Nizhny Novgorod, Russia; (G.O.G.); (M.M.L.); (E.B.K.); (E.V.G.); (A.A.A.); (A.M.S.); (M.A.S.); (N.D.G.)
| | - Anastasia A. Shepeleva
- Nizhny Novgorod Regional Oncological Hospital, 11/1 Delovaya St., 603093 Nizhny Novgorod, Russia; (E.A.A.); (A.A.S.); (S.V.G.)
| | - Alexander A. Moiseev
- A.V. Gaponov-Grekhov Institute of Applied Physics The Russian Academy of Sciences, 46 Ulyanova St., 603950 Nizhny Novgorod, Russia; (A.A.M.); (A.A.S.); (G.V.G.); (V.Y.Z.)
| | - Alexander A. Sovetsky
- A.V. Gaponov-Grekhov Institute of Applied Physics The Russian Academy of Sciences, 46 Ulyanova St., 603950 Nizhny Novgorod, Russia; (A.A.M.); (A.A.S.); (G.V.G.); (V.Y.Z.)
| | - Ekaterina V. Gubarkova
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603950 Nizhny Novgorod, Russia; (G.O.G.); (M.M.L.); (E.B.K.); (E.V.G.); (A.A.A.); (A.M.S.); (M.A.S.); (N.D.G.)
| | - Anastasia A. Anina
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603950 Nizhny Novgorod, Russia; (G.O.G.); (M.M.L.); (E.B.K.); (E.V.G.); (A.A.A.); (A.M.S.); (M.A.S.); (N.D.G.)
- Lobachevsky University, 23 Gagarin Av., 603022 Nizhny Novgorod, Russia
| | - Angelina M. Shutova
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603950 Nizhny Novgorod, Russia; (G.O.G.); (M.M.L.); (E.B.K.); (E.V.G.); (A.A.A.); (A.M.S.); (M.A.S.); (N.D.G.)
| | - Sergey V. Gamayunov
- Nizhny Novgorod Regional Oncological Hospital, 11/1 Delovaya St., 603093 Nizhny Novgorod, Russia; (E.A.A.); (A.A.S.); (S.V.G.)
| | - Grigory V. Gelikonov
- A.V. Gaponov-Grekhov Institute of Applied Physics The Russian Academy of Sciences, 46 Ulyanova St., 603950 Nizhny Novgorod, Russia; (A.A.M.); (A.A.S.); (G.V.G.); (V.Y.Z.)
| | - Vladimir Y. Zaitsev
- A.V. Gaponov-Grekhov Institute of Applied Physics The Russian Academy of Sciences, 46 Ulyanova St., 603950 Nizhny Novgorod, Russia; (A.A.M.); (A.A.S.); (G.V.G.); (V.Y.Z.)
| | - Marina A. Sirotkina
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603950 Nizhny Novgorod, Russia; (G.O.G.); (M.M.L.); (E.B.K.); (E.V.G.); (A.A.A.); (A.M.S.); (M.A.S.); (N.D.G.)
| | - Natalia D. Gladkova
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603950 Nizhny Novgorod, Russia; (G.O.G.); (M.M.L.); (E.B.K.); (E.V.G.); (A.A.A.); (A.M.S.); (M.A.S.); (N.D.G.)
| |
Collapse
|
4
|
Achkasova K, Kukhnina L, Moiseev A, Kiseleva E, Bogomolova A, Loginova M, Gladkova N. Detection of acute and early-delayed radiation-induced changes in the white matter of the rat brain based on numerical processing of optical coherence tomography data. JOURNAL OF BIOPHOTONICS 2024; 17:e202300458. [PMID: 38253332 DOI: 10.1002/jbio.202300458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/25/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
Detection of radiation-induced changes of the brain white matter is important for brain neoplasms repeated surgery. We investigated the influence of irradiation on the scattering properties of the white matter using optical coherence tomography (OCT). Healthy Wistar rats undergone the irradiation of the brain right hemisphere. At seven time points from the irradiation procedure (2-14 weeks), an ex vivo OCT study was performed with subsequent calculation of attenuation coefficient values in the corpus callosum followed by immunohistochemical analysis. As a result, we discovered acute and early-delayed changes characterized by the edema of different severity, accompanied by a statistically significant decrease in attenuation coefficient values. In particular, these changes were found at 2 weeks after irradiation in the irradiated hemisphere, while at 6- and 12-week time points they affected both irradiated and contralateral hemisphere. Thus, radiation-induced changes occurring in white matter during the first 3 months after irradiation can be detected by OCT.
Collapse
Affiliation(s)
- Ksenia Achkasova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Liudmila Kukhnina
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Alexander Moiseev
- Laboratory of Highly Sensitive Optical Measurements, Institute of Applied Physics of Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Elena Kiseleva
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Alexandra Bogomolova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Maria Loginova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Natalia Gladkova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| |
Collapse
|
5
|
Gubarkova E, Potapov A, Moiseev A, Kiseleva E, Krupinova D, Shatilova K, Karabut M, Khlopkov A, Loginova M, Radenska-Lopovok S, Gelikonov G, Grechkanev G, Gladkova N, Sirotkina M. Depth-Resolved Attenuation Mapping of the Vaginal Wall under Prolapse and after Laser Treatment Using Cross-Polarization Optical Coherence Tomography: A Pilot Study. Diagnostics (Basel) 2023; 13:3487. [PMID: 37998623 PMCID: PMC10670580 DOI: 10.3390/diagnostics13223487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Vaginal wall prolapse is the most common type of pelvic organ prolapse and is mainly associated with collagen bundle changes in the lamina propria. Neodymium (Nd:YAG) laser treatment was used as an innovative, minimally invasive and non-ablative procedure for the treatment of early-stage vaginal wall prolapse. The purpose of this pilot study was to assess connective tissue changes in the vaginal wall under prolapse without treatment and after Nd:YAG laser treatment using cross-polarization optical coherence tomography (CP OCT) with depth-resolved attenuation mapping. A total of 26 freshly excised samples of vaginal wall from 26 patients with age norm (n = 8), stage I-II prolapses without treatment (n = 8) and stage I-II prolapse 1-2 months after Nd:YAG laser treatment (n = 10) were assessed. As a result, for the first time, depth-resolved attenuation maps of the vaginal wall in the B-scan projection in the co- and cross-polarization channels were constructed. Two parameters within the lamina propria were target calculated: the median value and the percentages of high (≥4 mm-1) and low (<4 mm-1) attenuation coefficient values. A significant (p < 0.0001) decrease in the parameters in the case of vaginal wall prolapse compared to the age norm was identified. After laser treatment, a significant (p < 0.0001) increase in the parameters compared to the normal level was also observed. Notably, in the cross-channel, both parameters showed a greater difference between the groups than in the co-channel. Therefore, using the cross-channel achieved more reliable differentiation between the groups. To conclude, attenuation coefficient maps allow visualization and quantification of changes in the condition of the connective tissue of the vaginal wall. In the future, CP OCT could be used for in vivo detection of early-stage vaginal wall prolapse and for monitoring the effectiveness of treatment.
Collapse
Affiliation(s)
- Ekaterina Gubarkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603950 Nizhny Novgorod, Russia
- Center of Photonics, Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Arseniy Potapov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603950 Nizhny Novgorod, Russia
| | - Alexander Moiseev
- Institute of Applied Physics of the Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia
| | - Elena Kiseleva
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603950 Nizhny Novgorod, Russia
| | - Darya Krupinova
- Department of Obstetrics and Gynecology, Privolzhsky Research Medical University, 603950 Nizhny Novgorod, Russia
- Nizhny Novgorod Regional Oncologic Hospital, 603126 Nizhny Novgorod, Russia
| | | | - Maria Karabut
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603950 Nizhny Novgorod, Russia
| | | | - Maria Loginova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603950 Nizhny Novgorod, Russia
- Center of Photonics, Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Stefka Radenska-Lopovok
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603950 Nizhny Novgorod, Russia
- Institute of Clinical Morphology and Digital Pathology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Grigory Gelikonov
- Institute of Applied Physics of the Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia
| | - Gennady Grechkanev
- Department of Obstetrics and Gynecology, Privolzhsky Research Medical University, 603950 Nizhny Novgorod, Russia
| | - Natalia Gladkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603950 Nizhny Novgorod, Russia
| | - Marina Sirotkina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603950 Nizhny Novgorod, Russia
- Center of Photonics, Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| |
Collapse
|
6
|
Potapov A, Matveev L, Moiseev A, Sedova E, Loginova M, Karabut M, Kuznetsova I, Levchenko V, Grebenkina E, Gamayunov S, Radenska-Lopovok S, Sirotkina M, Gladkova N. Multimodal OCT Control for Early Histological Signs of Vulvar Lichen Sclerosus Recurrence after Systemic PDT: Pilot Study. Int J Mol Sci 2023; 24:13967. [PMID: 37762270 PMCID: PMC10531024 DOI: 10.3390/ijms241813967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Photodynamic therapy (PDT) is a modern treatment for severe or treatment-resistant vulvar lichen sclerosus (VLS). The chronic and recurrent nature of VLS requires control of recurrences at an early stage. In this paper, a non-invasive multimodal optical coherence tomography (OCT) method was used to control for early histological signs of VLS recurrence after systemic PDT using Photodithazine®. To interpret the OCT data, a histological examination was performed before PDT and 3 months after PDT. Two groups of patients were identified: with early histological signs of VLS recurrence (Group I, n = 5) and without histological signs of VLS recurrence (Group II, n = 6). We use structural OCT, OCT angiography, and OCT lymphangiography throughout 6 months after PDT to visually assess the skin components and to quantitatively assess the dermis by calculating the depth-resolved attenuation coefficient and the density of blood and lymphatic vessels. The OCT data assessment showed a statistically significant difference between the patient groups 3 months after PDT. In Group II, all the studied OCT parameters reached maximum values by the 3rd month after PDT, which indicated recovery of the skin structure. At the same time, in Group I, the values of OCT parameters did not approach the values those in Group II even after 6 months. The obtained results of multimodal OCT can be used for non-invasive control of early histological recurrence of VLS after systemic PDT and for adjusting treatment tactics in advance, without waiting for new clinical manifestations of the disease.
Collapse
Affiliation(s)
- Arseniy Potapov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603950 Nizhny Novgorod, Russia; (A.P.); (N.G.)
| | - Lev Matveev
- Institute of Applied Physics Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia; (L.M.); (A.M.)
| | - Alexander Moiseev
- Institute of Applied Physics Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia; (L.M.); (A.M.)
| | - Elena Sedova
- Nizhny Novgorod Regional Oncologic Hospital, 603126 Nizhny Novgorod, Russia
| | - Maria Loginova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603950 Nizhny Novgorod, Russia; (A.P.); (N.G.)
- Center of Photonics, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Maria Karabut
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603950 Nizhny Novgorod, Russia; (A.P.); (N.G.)
| | - Irina Kuznetsova
- Department of Obstetrics and Gynecology, Privolzhsky Research Medical University, 603950 Nizhny Novgorod, Russia
- N.A. Semashko Nizhny Novgorod Regional Clinical Hospital, 603126 Nizhny Novgorod, Russia
| | | | - Elena Grebenkina
- Nizhny Novgorod Regional Oncologic Hospital, 603126 Nizhny Novgorod, Russia
- Kstovo Central District Hospital, 607650 Kstovo, Russia
| | - Sergey Gamayunov
- Nizhny Novgorod Regional Oncologic Hospital, 603126 Nizhny Novgorod, Russia
| | - Stefka Radenska-Lopovok
- Institute of Clinical Morphology and Digital Pathology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Marina Sirotkina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603950 Nizhny Novgorod, Russia; (A.P.); (N.G.)
| | - Natalia Gladkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603950 Nizhny Novgorod, Russia; (A.P.); (N.G.)
| |
Collapse
|