1
|
Kaleris K, Hatziantoniou P, Stelzner B, Trimis D. Laser-sound reproduction by pulse amplitude modulation audio streams. Sci Rep 2024; 14:12102. [PMID: 38802427 PMCID: PMC11130162 DOI: 10.1038/s41598-024-62382-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
Recently, the possibility to reproduce complex continuous acoustic signals via pulsed laser-plasma sound sources was demonstrated. This was achieved by optoacoustic transduction of dense laser pulse trains, modulated via single- or multi-bit Sigma-Delta, in the air or on solid targets. In this work, we extend the laser-sound concept to amplitude modulation techniques. Particularly, we demonstrate the possibility of transcoding audio streams directly into acoustic pulse streams by analog pulsed amplitude modulation. For this purpose, an electro-optic modulator is used to achieve pulse-to-pulse amplitude modulation of the laser radiation, similarly to the multi-level Sigma-Delta method. The modulator is directly driven by the analog input stream through an audio interface. The performance of the system is evaluated at a proof-of-principle level for the reproduction of test audio signals such as single tones, double tones and sine sweeps, within a limited frequency range of the audible spectrum. The results are supported by computational simulations of the reproduced acoustic signals using a linear convolution model that takes as input the audio signal and the laser-generated acoustic pulse profile. The study shows that amplitude modulation allows for significant relaxation of the laser repetition rate requirements compared to the Sigma-Delta-based implementation, albeit at the potential cost of increased distortion of the reproduced sound signal. The nature of the distortions is analyzed and a preliminary experimental and computational investigation for their suppression is presented.
Collapse
Affiliation(s)
- Konstantinos Kaleris
- Wire Communications Laboratory, Audio and Acoustic Technology Group, Department of Electrical and Computer Engineering, University of Patras, 26500 Rio, Patras, Greece.
- Institute of Plasma Physics and Lasers, Hellenic Mediterranean University, 74100 Rethymno, Greece.
| | - Panagiotis Hatziantoniou
- Wire Communications Laboratory, Audio and Acoustic Technology Group, Department of Electrical and Computer Engineering, University of Patras, 26500 Rio, Patras, Greece
| | - Bjoern Stelzner
- Engler-Bunte-Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| | - Dimosthenis Trimis
- Engler-Bunte-Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
2
|
Lengert L, Tomanek M, Ghoncheh M, Lohmann H, Prenzler N, Kalies S, Johannsmeier S, Ripken T, Heisterkamp A, Maier H. Acoustic stimulation of the human round window by laser-induced nonlinear optoacoustics. Sci Rep 2024; 14:8214. [PMID: 38589426 PMCID: PMC11001906 DOI: 10.1038/s41598-024-58129-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
The feasibility of low frequency pure tone generation in the inner ear by laser-induced nonlinear optoacoustic effect at the round window was demonstrated in three human cadaveric temporal bones (TB) using an integral pulse density modulation (IPDM). Nanosecond laser pulses with a wavelength in the near-infrared (NIR) region were delivered to the round window niche by an optical fiber with two spherical lenses glued to the end and a viscous gel at the site of the laser focus. Using IPDM, acoustic tones with frequencies between 20 Hz and 1 kHz were generated in the inner ear. The sound pressures in scala tympani and vestibuli were recorded and the intracochlear pressure difference (ICPD) was used to calculate the equivalent sound pressure level (eq. dB SPL) as an equivalent for perceived loudness. The results demonstrate that the optoacoustic effect produced sound pressure levels ranging from 140 eq. dB SPL at low frequencies ≤ 200 Hz to 90 eq. dB SPL at 1 kHz. Therefore, the produced sound pressure level is potentially sufficient for patients requiring acoustic low frequency stimulation. Hence, the presented method offers a potentially viable solution in the future to provide the acoustic stimulus component in combined electro-acoustic stimulation with a cochlear implant.
Collapse
Affiliation(s)
- Liza Lengert
- Laser Zentrum Hannover E.V., Hollerithallee 8, 30419, Hannover, Germany
- NIFE, Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Hannover, Germany
| | - Michael Tomanek
- Department of Otorhinolaryngology and Cluster of Excellence "Hearing4all", Hannover Medical School, VIANNA/NIFE, Stadtfelddamm 34, 30625, Hannover, Germany
| | - Mohammad Ghoncheh
- Department of Otorhinolaryngology and Cluster of Excellence "Hearing4all", Hannover Medical School, VIANNA/NIFE, Stadtfelddamm 34, 30625, Hannover, Germany
| | - Hinnerk Lohmann
- Laser Zentrum Hannover E.V., Hollerithallee 8, 30419, Hannover, Germany
| | - Nils Prenzler
- Department of Otorhinolaryngology and Cluster of Excellence "Hearing4all", Hannover Medical School, VIANNA/NIFE, Stadtfelddamm 34, 30625, Hannover, Germany
| | - Stefan Kalies
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany
| | - Sonja Johannsmeier
- Laser Zentrum Hannover E.V., Hollerithallee 8, 30419, Hannover, Germany
- NIFE, Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Hannover, Germany
| | - Tammo Ripken
- Laser Zentrum Hannover E.V., Hollerithallee 8, 30419, Hannover, Germany
- NIFE, Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Hannover, Germany
| | | | - Hannes Maier
- Department of Otorhinolaryngology and Cluster of Excellence "Hearing4all", Hannover Medical School, VIANNA/NIFE, Stadtfelddamm 34, 30625, Hannover, Germany.
| |
Collapse
|