1
|
Li Z, Kegui H, Piao W, Xuejiu W, Lim KT, Jin H. PAI-1 transfected-conditioned media promotes osteogenic differentiation of hBMSCs. Cell Biol Int 2024. [PMID: 38654436 DOI: 10.1002/cbin.12166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/28/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Reconstruction of injured bone remains challenging in the clinic owing to the lack of suitable bone grafts. The utilization of PAI-1 transfected-conditioned media (P-CM) has demonstrated its ability to facilitate the differentiation process of mesenchymal stem cells (MSCs), potentially serving as a crucial mediator in tissue regeneration. This research endeavored to explore the therapeutic potential of P-CM concerning the differentiation of human bone marrow mesenchymal stem cells (hBMSCs). To assess new bone formation, a rat calvaria critical defect model was employed, while in vitro experiments involved the use of the alizarin Red-S mineral induction test. In the rat calvaria critical defect model, P-CM treatment resulted in significan new bone formation. In vitro, P-CM treated hBMSCs displayed robust osteogenesis compared to the control group, as demonstrated by the mineral induction test using alizarin Red-S. P-CM with hydroxyapatite/β-tricalcium phosphate/fibrin gel treatment significantly exhibited new bone formation, and the expression of osteogenic associated markers was enhanced in the P-CM-treated group. In conclusion, results demonstrate that P-CM treatment significantly enhanced the osteogenic differantiation efficiency and new bone formation, thus could be used as an ideal therapeutic biomolecule for constructing bone-specific implants, especially for orthopedic and dental applications.
Collapse
Affiliation(s)
- Zhang Li
- Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Hou Kegui
- Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Wang Piao
- Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Wang Xuejiu
- Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, South Korea
| | - Hexiu Jin
- Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Saito T, Yokoi T, Nakamura A, Matsunaga K. First-principles based theoretical calculations of atomic structures of hydroxyapatite surfaces and their charge states in contact with aqueous solutions. RSC Adv 2021; 11:34004-34014. [PMID: 35497313 PMCID: PMC9042352 DOI: 10.1039/d1ra06311a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/01/2021] [Indexed: 01/09/2023] Open
Abstract
Surface charge states of biomaterials are often important for the adsorption of cells, proteins, and foreign ions on their surfaces, which should be clarified at the atomic and electronic levels. First-principles calculations were performed to reveal thermodynamically stable surface atomic structures and their charge states in hydroxyapatite (HAp). Effects of aqueous environments on the surface stability were considered using an implicit solvation model. It was found that in an air atmosphere, stoichiometric {0001} and P-rich {101̄0} surfaces are energetically favorable, whereas in an aqueous solution, a Ca-rich {101̄0} surface is the most stable. This difference suggests that preferential surface structures strongly depend on chemical environments with and without aqueous solutions. Their surface potentials at zero charge were calculated to obtain the isoelectric points (pHPZC). pHPZC values for the {0001} surface and the Ca-rich {101̄0} surface were obtained to be 4.8 and 8.7, respectively. This indicates that in an aqueous solution at neutral pH, the {0001} and Ca-rich {101̄0} surfaces are negatively and positively charged, respectively. This trend agrees with experimental data from chromatography and zeta potential measurements. Our methodology based on first-principles calculations enables determining macroscopic charge states of HAp surfaces from atomic and electronic levels.
Collapse
Affiliation(s)
- T Saito
- Department of Materials Physics, Nagoya University Nagoya 464-8603 Japan
| | - T Yokoi
- Department of Materials Physics, Nagoya University Nagoya 464-8603 Japan
| | - A Nakamura
- Department of Materials Physics, Nagoya University Nagoya 464-8603 Japan
| | - K Matsunaga
- Department of Materials Physics, Nagoya University Nagoya 464-8603 Japan
- Nanostructures Research Laboratory, Japan Fine Ceramics Center Nagoya 456-8587 Japan
| |
Collapse
|
3
|
Tamari T, Kawar-Jaraisy R, Doppelt O, Giladi B, Sabbah N, Zigdon-Giladi H. The Paracrine Role of Endothelial Cells in Bone Formation via CXCR4/SDF-1 Pathway. Cells 2020; 9:cells9061325. [PMID: 32466427 PMCID: PMC7349013 DOI: 10.3390/cells9061325] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
Vascularization is a prerequisite for bone formation. Endothelial progenitor cells (EPCs) stimulate bone formation by creating a vascular network. Moreover, EPCs secrete various bioactive molecules that may regulate bone formation. The aim of this research was to shed light on the pathways of EPCs in bone formation. In a subcutaneous nude mouse ectopic bone model, the transplantation of human EPCs onto β-TCP scaffold increased angiogenesis (p < 0.001) and mineralization (p < 0.01), compared to human neonatal dermal fibroblasts (HNDF group) and a-cellular scaffold transplantation (β-TCP group). Human EPCs were lining blood vessels lumen; however, the majority of the vessels originated from endogenous mouse endothelial cells at a higher level in the EPC group (p < 01). Ectopic mineralization was mostly found in the EPCs group, and can be attributed to the recruitment of endogenous mesenchymal cells ten days after transplantation (p < 0.0001). Stromal derived factor-1 gene was expressed at high levels in EPCs and controlled the migration of mesenchymal and endothelial cells towards EPC conditioned medium in vitro. Blocking SDF-1 receptors on both cells abolished cell migration. In conclusion, EPCs contribute to osteogenesis mainly by the secretion of SDF-1, that stimulates homing of endothelial and mesenchymal cells. This data may be used to accelerate bone formation in the future.
Collapse
Affiliation(s)
- Tal Tamari
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa 3109601, Israel; (T.T.); (O.D.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (B.G.); (N.S.)
| | - Rawan Kawar-Jaraisy
- The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv 69978, Israel;
| | - Ofri Doppelt
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa 3109601, Israel; (T.T.); (O.D.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (B.G.); (N.S.)
| | - Ben Giladi
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (B.G.); (N.S.)
| | - Nadin Sabbah
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (B.G.); (N.S.)
| | - Hadar Zigdon-Giladi
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa 3109601, Israel; (T.T.); (O.D.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (B.G.); (N.S.)
- Correspondence: ; Tel.: +972-4-8543606
| |
Collapse
|
4
|
Smith BT, Bittner SM, Watson E, Smoak MM, Diaz-Gomez L, Molina ER, Kim YS, Hudgins CD, Melchiorri AJ, Scott DW, Grande-Allen KJ, Yoo JJ, Atala A, Fisher JP, Mikos AG. Multimaterial Dual Gradient Three-Dimensional Printing for Osteogenic Differentiation and Spatial Segregation. Tissue Eng Part A 2019; 26:239-252. [PMID: 31696784 DOI: 10.1089/ten.tea.2019.0204] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this study of three-dimensional (3D) printed composite β-tricalcium phosphate (β-TCP)-/hydroxyapatite/poly(ɛ-caprolactone)-based constructs, the effects of vertical compositional ceramic gradients and architectural porosity gradients on the osteogenic differentiation of rabbit bone marrow-derived mesenchymal stem cells (MSCs) were investigated. Specifically, three different concentrations of β-TCP (0, 10, and 20 wt%) and three different porosities (33% ± 4%, 50% ± 4%, and 65% ± 3%) were examined to elucidate the contributions of chemical and physical gradients on the biochemical behavior of MSCs and the mineralized matrix production within a 3D culture system. By delaminating the constructs at the gradient transition point, the spatial separation of cellular phenotypes could be specifically evaluated for each construct section. Results indicated that increased concentrations of β-TCP resulted in upregulation of osteogenic markers, including alkaline phosphatase activity and mineralized matrix development. Furthermore, MSCs located within regions of higher porosity displayed a more mature osteogenic phenotype compared to MSCs in lower porosity regions. These results demonstrate that 3D printing can be leveraged to create multiphasic gradient constructs to precisely direct the development and function of MSCs, leading to a phenotypic gradient. Impact Statement In this study, three-dimensional (3D) printed ceramic/polymeric constructs containing discrete vertical gradients of both composition and porosity were fabricated to precisely control the osteogenic differentiation of mesenchymal stem cells. By making simple alterations in construct architecture and composition, constructs containing heterogenous populations of cells were generated, where gradients in scaffold design led to corresponding gradients in cellular phenotype. The study demonstrates that 3D printed multiphasic composite constructs can be leveraged to create complex heterogeneous tissues and interfaces.
Collapse
Affiliation(s)
- Brandon T Smith
- Department of Bioengineering, Rice University, Houston, Texas.,Biomaterials Lab, Rice University, Houston, Texas.,NIH/NIBIB Center for Engineering Complex Tissues, Houston, Texas.,Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas
| | - Sean M Bittner
- Department of Bioengineering, Rice University, Houston, Texas.,Biomaterials Lab, Rice University, Houston, Texas.,NIH/NIBIB Center for Engineering Complex Tissues, Houston, Texas
| | - Emma Watson
- Department of Bioengineering, Rice University, Houston, Texas.,Biomaterials Lab, Rice University, Houston, Texas.,NIH/NIBIB Center for Engineering Complex Tissues, Houston, Texas.,Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas
| | - Mollie M Smoak
- Department of Bioengineering, Rice University, Houston, Texas.,Biomaterials Lab, Rice University, Houston, Texas.,NIH/NIBIB Center for Engineering Complex Tissues, Houston, Texas
| | - Luis Diaz-Gomez
- Department of Bioengineering, Rice University, Houston, Texas.,Biomaterials Lab, Rice University, Houston, Texas.,NIH/NIBIB Center for Engineering Complex Tissues, Houston, Texas
| | - Eric R Molina
- Department of Bioengineering, Rice University, Houston, Texas.,Biomaterials Lab, Rice University, Houston, Texas.,NIH/NIBIB Center for Engineering Complex Tissues, Houston, Texas.,Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas
| | - Yu Seon Kim
- Department of Bioengineering, Rice University, Houston, Texas.,Biomaterials Lab, Rice University, Houston, Texas.,NIH/NIBIB Center for Engineering Complex Tissues, Houston, Texas
| | - Carrigan D Hudgins
- Department of Bioengineering, Rice University, Houston, Texas.,Biomaterials Lab, Rice University, Houston, Texas.,NIH/NIBIB Center for Engineering Complex Tissues, Houston, Texas
| | - Anthony J Melchiorri
- Department of Bioengineering, Rice University, Houston, Texas.,Biomaterials Lab, Rice University, Houston, Texas.,NIH/NIBIB Center for Engineering Complex Tissues, Houston, Texas
| | - David W Scott
- Department of Statistics, Rice University, Houston, Texas
| | | | - James J Yoo
- NIH/NIBIB Center for Engineering Complex Tissues, Houston, Texas.,Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina
| | - Anthony Atala
- NIH/NIBIB Center for Engineering Complex Tissues, Houston, Texas.,Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina
| | - John P Fisher
- NIH/NIBIB Center for Engineering Complex Tissues, Houston, Texas.,Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, Texas.,Biomaterials Lab, Rice University, Houston, Texas.,NIH/NIBIB Center for Engineering Complex Tissues, Houston, Texas
| |
Collapse
|
5
|
Abstract
Bone tissue engineering is currently a mature methodology from a research perspective. Moreover, modeling and simulation of involved processes and phenomena in BTE have been proved in a number of papers to be an excellent assessment tool in the stages of design and proof of concept through in-vivo or in-vitro experimentation. In this paper, a review of the most relevant contributions in modeling and simulation, in silico, in BTE applications is conducted. The most popular in silico simulations in BTE are classified into: (i) Mechanics modeling and scaffold design, (ii) transport and flow modeling, and (iii) modeling of physical phenomena. The paper is restricted to the review of the numerical implementation and simulation of continuum theories applied to different processes in BTE, such that molecular dynamics or discrete approaches are out of the scope of the paper. Two main conclusions are drawn at the end of the paper: First, the great potential and advantages that in silico simulation offers in BTE, and second, the need for interdisciplinary collaboration to further validate numerical models developed in BTE.
Collapse
|
6
|
Kawecki F, Clafshenkel WP, Fortin M, Auger FA, Fradette J. Biomimetic Tissue-Engineered Bone Substitutes for Maxillofacial and Craniofacial Repair: The Potential of Cell Sheet Technologies. Adv Healthc Mater 2018; 7:e1700919. [PMID: 29280323 DOI: 10.1002/adhm.201700919] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/02/2017] [Indexed: 12/21/2022]
Abstract
Maxillofacial defects are complex lesions stemming from various etiologies: accidental, congenital, pathological, or surgical. A bone graft may be required when the normal regenerative capacity of the bone is exceeded or insufficient. Surgeons have many options available for bone grafting including the "gold standard" autologous bone graft. However, this approach is not without drawbacks such as the morbidity associated with harvesting bone from a donor site, pain, infection, or a poor quantity and quality of bone in some patient populations. This review discusses the various bone graft substitutes used for maxillofacial and craniofacial repair: allografts, xenografts, synthetic biomaterials, and tissue-engineered substitutes. A brief overview of bone tissue engineering evolution including the use of mesenchymal stem cells is exposed, highlighting the first clinical applications of adipose-derived stem/stromal cells in craniofacial reconstruction. The importance of prevascularization strategies for bone tissue engineering is also discussed, with an emphasis on recent work describing substitutes produced using cell sheet-based technologies, including the use of thermo-responsive plates and the self-assembly approach of tissue engineering. Indeed, considering their entirely cell-based design, these natural bone-like substitutes have the potential to closely mimic the osteogenicity, osteoconductivity, osteoinduction, and osseointegration properties of autogenous bone for maxillofacial and craniofacial reconstruction.
Collapse
Affiliation(s)
- Fabien Kawecki
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX Division of Regenerative Medicine CHU de Québec Research Center‐Université Laval Québec QC G1J 1Z4 Canada
- Department of Surgery Faculty of Medicine Université Laval Québec QC G1V 0A6 Canada
| | - William P. Clafshenkel
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX Division of Regenerative Medicine CHU de Québec Research Center‐Université Laval Québec QC G1J 1Z4 Canada
- Department of Surgery Faculty of Medicine Université Laval Québec QC G1V 0A6 Canada
| | - Michel Fortin
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX Division of Regenerative Medicine CHU de Québec Research Center‐Université Laval Québec QC G1J 1Z4 Canada
- Department of Oral and Maxillofacial Surgery Faculty of Dentistry Université Laval Québec QC G1V 0A6 Canada
| | - François A. Auger
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX Division of Regenerative Medicine CHU de Québec Research Center‐Université Laval Québec QC G1J 1Z4 Canada
- Department of Surgery Faculty of Medicine Université Laval Québec QC G1V 0A6 Canada
| | - Julie Fradette
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX Division of Regenerative Medicine CHU de Québec Research Center‐Université Laval Québec QC G1J 1Z4 Canada
- Department of Surgery Faculty of Medicine Université Laval Québec QC G1V 0A6 Canada
| |
Collapse
|
7
|
Correa D, Somoza RA, Caplan AI. Nondestructive/Noninvasive Imaging Evaluation of Cellular Differentiation Progression During In Vitro Mesenchymal Stem Cell-Derived Chondrogenesis. Tissue Eng Part A 2018; 24:662-671. [PMID: 28825369 DOI: 10.1089/ten.tea.2017.0125] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Chondrogenic cell differentiation constitutes a multistep program that is spatially and temporally modulated by combinations of bioactive factors that drives the establishment of specific cellular phenotypes. This sequence of events results in the fabrication of a distinctive structural and functional extracellular matrix which determines the quality of the cartilaginous tissue and, thus, its potential in vivo implantability as a tissue-engineered implant. Current assessments of engineered cartilage rely on destructive methodologies typically applied at the end of the fabrication period that make it difficult to predict failures early in the process. The high inherent variability of engineered tissues raises questions regarding reproducibility and the validity of using such end-stage representative samples to characterize an entire batch of engineered tissues. Therefore, the development of dynamic, multimodal, nondestructive, and noninvasive technology toolsets to monitor cell differentiation (and secondarily tissue phenotypes) in real time is of paramount importance. In this study, we report the creation of cell-based probes to directly interrogate cell differentiation events during in vitro chondrogenesis and in vivo osteogenesis. For that, native promoters of well-established chondrogenic (Sex Determining Region Y-Box 9 [Sox9] and Aggrecan [AGG]) and osteogenic (Osteocalcin [OC]) differentiation biomarkers were used to create independent probes incorporating a traceable signal (Luciferase) and transduced into human bone marrow-derived mesenchymal stem cells. The probes were used to monitor the progression throughout in vitro chondrogenic differentiation program in aggregate (pellet) cultures and in vivo osteogenic differentiation in heterotopic ossicles. These tissue differentiation constructs were positively tested in conditions known to modulate the differentiation program at various phases that confirmed their sensitivity and reproducibility. This technology toolset allows a nondestructive and noninvasive, imaging-based longitudinal reconstruction of the in vitro chondrogenic differentiation program, while providing an analytical assessment of phenotypic changes of engineered cartilage in real time.
Collapse
Affiliation(s)
- Diego Correa
- 1 Department of Biology, Skeletal Research Center, and Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University , Cleveland, Ohio.,2 Division of Sports Medicine, Department of Orthopaedics, Miller School of Medicine, University of Miami , Miami, Florida.,3 Diabetes Research Institute and Cell Transplant Center, Miller School of Medicine, University of Miami , Miami, Florida
| | - Rodrigo A Somoza
- 1 Department of Biology, Skeletal Research Center, and Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University , Cleveland, Ohio
| | - Arnold I Caplan
- 1 Department of Biology, Skeletal Research Center, and Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University , Cleveland, Ohio
| |
Collapse
|
8
|
Sonochemical synthesis of fructose 1,6-bisphosphate dicalcium porous microspheres and their application in promotion of osteogenic differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:846-856. [DOI: 10.1016/j.msec.2017.03.297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/28/2017] [Accepted: 03/31/2017] [Indexed: 01/01/2023]
|
9
|
Dennis JE, Haynesworth SE, Young RG, Caplan AI. Osteogenesis in Marrow-Derived Mesenchymal Cell Porous Ceramic Composites Transplanted Subcutaneously: Effect of Fibronectin and Laminin on Cell Retention and Rate of Osteogenic Expression. Cell Transplant 2017; 1:23-32. [PMID: 1344289 DOI: 10.1177/096368979200100106] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cultured-expanded rat marrow-derived mesenchymal cells differentiate into osteoblasts when combined with a porous calcium phosphate delivery vehicle and subsequently implanted in vivo. In this study, the effects of ceramic pretreatment with the cell-binding proteins fibronectin and laminin on the osteogenic expression of marrow-derived mesenchymal cells were assessed by scanning electron microscopy, [3H]-thymidine-labeled cell quantitation, and histological evaluation of bone formation. Scanning electron microscopic observations showed that marrow-derived mesenchymal cells rapidly spread and attach to both fibronectin- or laminin-adsorbed ceramic surfaces but retain a rounded morphology on untreated ceramic surfaces. Quantitation of [3H]-thymidine labeled cells demonstrated that laminin and fibronectin preadsorbed ceramics retain approximately double the number of marrow-derived mesenchymal cells than do untreated ceramics harvested 1 wk postimplantation. Histological observations indicate that the amount of time required to first detect osteogenesis was shortened significantly by pretreatment of the ceramic with either fibronectin or laminin. Fibronectin- and laminin-coated ceramic composite samples were observed to contain bone within 2 wk postimplantation, while in untreated ceramic the earliest observation of bone was at 4 wk postimplantation. A comparison was made of the initial cell-loading, in vivo cell retention characteristics, and rate of osteogenesis initiation of marrow-derived mesenchymal cells on two types of ceramic with different pore structure and chemical composition, with and without preadsorption with fibronectin or laminin. “Biphasic” ceramics contain randomly distributed pores 200-400 μm in diameter, and “coral-based” ceramics have continuous pores of approximately 200 μm in diameter. Laminin or fibronectin preadsorption significantly increases the number of cells retained in all ceramic test groups by day 7 postimplantation. In addition, by day 7 postimplantation, the biphasic ceramics retain a significantly greater number of cells for all test groups than do coral-based ceramics. The biphasic ceramics consistently have more specimens positive for bone with the identical cell-loading conditions used throughout this study. These results indicate that the retention of cells within the ceramic is an important factor for optimization of marrow mesenchymal cell initiated bone formation. The retention of cells within ceramics is augmented by the adsorption of the cell-binding proteins laminin and fibronectin, but this effect varies depending on ceramic pore structure and/or chemical composition.
Collapse
Affiliation(s)
- J E Dennis
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106
| | | | | | | |
Collapse
|
10
|
Kaigler D, Krebsbach PH, Wang Z, West ER, Horger K, Mooney DJ. Transplanted Endothelial Cells Enhance Orthotopic Bone Regeneration. J Dent Res 2016; 85:633-7. [PMID: 16798864 DOI: 10.1177/154405910608500710] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The aim of this study was to determine if endothelial cells could enhance bone marrow stromal-cell-mediated bone regeneration in an osseous defect. Using poly-lactide-co-glycolide scaffolds as cell carriers, we transplanted bone marrow stromal cells alone or with endothelial cells into 8.5-mm calvarial defects created in nude rats. Histological analyses of blood vessel and bone formation were performed, and microcomputed tomography (μCT) was used to assess mineralized bone matrix. Though the magnitude of the angiogenic response between groups was the same, μCT analysis revealed earlier mineralization of bone in the co-transplantation condition. Ultimately, there was a significant increase (40%) in bone formation in the co-transplantation group (33 ± 2%), compared with the transplantation of bone marrow stromal cells alone (23 ± 3%). Analysis of these data demonstrates that, in an orthotopic site, transplanted endothelial cells can influence the bone-regenerative capacity of bone marrow stromal cells.
Collapse
Affiliation(s)
- D Kaigler
- Dept. of Periodontics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
11
|
Maleki Dizaj S, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K. Physicochemical characterization and antimicrobial evaluation of gentamicin-loaded CaCO3 nanoparticles prepared via microemulsion method. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2016.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
12
|
Ahmed GJ, Tatsukawa E, Morishita K, Shibata Y, Suehiro F, Kamitakahara M, Yokoi T, Koji T, Umeda M, Nishimura M, Ikeda T. Regulation and Biological Significance of Formation of Osteoclasts and Foreign Body Giant Cells in an Extraskeletal Implantation Model. Acta Histochem Cytochem 2016; 49:97-107. [PMID: 27462135 PMCID: PMC4939317 DOI: 10.1267/ahc.16007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/31/2016] [Indexed: 01/03/2023] Open
Abstract
The implantation of biomaterials induces a granulomatous reaction accompanied by foreign body giant cells (FBGCs). The characterization of multinucleated giant cells (MNGCs) around bone substitutes implanted in bone defects is more complicated because of healing with bone admixed with residual bone substitutes and their hybrid, and the appearance of two kinds of MNGCs, osteoclasts and FBGCs. Furthermore, the clinical significance of osteoclasts and FBGCs in the healing of implanted regions remains unclear. The aim of the present study was to characterize MNGCs around bone substitutes using an extraskeletal implantation model and evaluate the clinical significance of osteoclasts and FBGCs. Beta-tricalcium phosphate (β-TCP) granules were implanted into rat subcutaneous tissue with or without bone marrow mesenchymal cells (BMMCs), which include osteogenic progenitor cells. We also compared the biological significance of plasma and purified fibrin, which were used as binders for implants. Twelve weeks after implantation, osteogenesis was only detected in specimens implanted with BMMCs. The expression of two typical osteoclast markers, tartrate-resistant acid phosphatase (TRAP) and cathepsin-K (CTSK), was analyzed, and TRAP-positive and CTSK-positive osteoclasts were only detected beside bone. In contrast, most of the MNGCs in specimens without the implantation of BMMCs were FBGCs that were negative for TRAP, whereas the degradation of β-TCP was detected. In the region implanted with β-TCP granules with plasma, FBGCs tested positive for CTSK, and when β-TCP granules were implanted with purified fibrin, FBGCs tested negative for CTSK. These results showed that osteogenesis was essential to osteoclastogenesis, two kinds of FBGCs, CTSK-positive and CTSK-negative, were induced, and the expression of CTSK was plasma-dependent. In addition, the implantation of BMMCs was suggested to contribute to osteogenesis and the replacement of implanted β-TCP granules to bone.
Collapse
Affiliation(s)
- Gazi Jased Ahmed
- Departments of Clinical Oncology, Nagasaki University Graduate School of Biomedical Sciences
- Department of Oral Pathology and Bone Metabolism, Nagasaki University Graduate School of Biomedical Sciences
| | - Eri Tatsukawa
- Department of Oral Pathology and Bone Metabolism, Nagasaki University Graduate School of Biomedical Sciences
| | - Kota Morishita
- Departments of Clinical Oncology, Nagasaki University Graduate School of Biomedical Sciences
- Department of Oral Pathology and Bone Metabolism, Nagasaki University Graduate School of Biomedical Sciences
| | - Yasuaki Shibata
- Department of Oral Pathology and Bone Metabolism, Nagasaki University Graduate School of Biomedical Sciences
| | - Fumio Suehiro
- Department of Prosthodontics, Kagoshima University Graduate School
| | | | - Taishi Yokoi
- Graduate School of Environmental Studies, Tohoku University
| | - Takehiko Koji
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences
| | - Masahiro Umeda
- Departments of Clinical Oncology, Nagasaki University Graduate School of Biomedical Sciences
| | | | - Tohru Ikeda
- Department of Oral Pathology and Bone Metabolism, Nagasaki University Graduate School of Biomedical Sciences
| |
Collapse
|
13
|
Sharif F, Ur Rehman I, Muhammad N, MacNeil S. Dental materials for cleft palate repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 61:1018-28. [PMID: 26838929 DOI: 10.1016/j.msec.2015.12.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/08/2015] [Accepted: 12/10/2015] [Indexed: 12/26/2022]
Abstract
Numerous bone and soft tissue grafting techniques are followed to repair cleft of lip and palate (CLP) defects. In addition to the gold standard surgical interventions involving the use of autogenous grafts, various allogenic and xenogenic graft materials are available for bone regeneration. In an attempt to discover minimally invasive and cost effective treatments for cleft repair, an exceptional growth in synthetic biomedical graft materials have occurred. This study gives an overview of the use of dental materials to repair cleft of lip and palate (CLP). The eligibility criteria for this review were case studies, clinical trials and retrospective studies on the use of various types of dental materials in surgical repair of cleft palate defects. Any data available on the surgical interventions to repair alveolar or palatal cleft, with natural or synthetic graft materials was included in this review. Those datasets with long term clinical follow-up results were referred to as particularly relevant. The results provide encouraging evidence in favor of dental and other related biomedical materials to fill the gaps in clefts of lip and palate. The review presents the various bones and soft tissue replacement strategies currently used, tested or explored for the repair of cleft defects. There was little available data on the use of synthetic materials in cleft repair which was a limitation of this study. In conclusion although clinical trials on the use of synthetic materials are currently underway the uses of autologous implants are the preferred treatment methods to date.
Collapse
Affiliation(s)
- Faiza Sharif
- Department of Materials Science & Engineering, Kroto Research Institute, University of Sheffield, Broad Lane, Sheffield, UK; Interdisciplinary Research Centre in Biomedical Materials, COMSATS Institute of Information Technology, Lahore, Pakistan.
| | - Ihtesham Ur Rehman
- Department of Materials Science & Engineering, Kroto Research Institute, University of Sheffield, Broad Lane, Sheffield, UK
| | - Nawshad Muhammad
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS Institute of Information Technology, Lahore, Pakistan.
| | - Sheila MacNeil
- Department of Materials Science & Engineering, Kroto Research Institute, University of Sheffield, Broad Lane, Sheffield, UK
| |
Collapse
|
14
|
Kusuma GD, Menicanin D, Gronthos S, Manuelpillai U, Abumaree MH, Pertile MD, Brennecke SP, Kalionis B. Ectopic Bone Formation by Mesenchymal Stem Cells Derived from Human Term Placenta and the Decidua. PLoS One 2015; 10:e0141246. [PMID: 26484666 PMCID: PMC4618923 DOI: 10.1371/journal.pone.0141246] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 10/05/2015] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are one of the most attractive cell types for cell-based bone tissue repair applications. Fetal-derived MSCs and maternal-derived MSCs have been isolated from chorionic villi of human term placenta and the decidua basalis attached to the placenta following delivery, respectively. Chorionic-derived MSCs (CMSCs) and decidua-derived MSCs (DMSCs) generated in this study met the MSCs criteria set by International Society of Cellular Therapy. These criteria include: (i) adherence to plastic; (ii) >90% expression of CD73, CD105, CD90, CD146, CD44 and CD166 combined with <5% expression of CD45, CD19 and HLA-DR; and (iii) ability to differentiate into osteogenic, adipogenic, and chondrogenic lineages. In vivo subcutaneous implantation into SCID mice showed that both bromo-deoxyuridine (BrdU)-labelled CMSCs and DMSCs when implanted together with hydroxyapatite/tricalcium phosphate particles were capable of forming ectopic bone at 8-weeks post-transplantation. Histological assessment showed expression of bone markers, osteopontin (OPN), osteocalcin (OCN), biglycan (BGN), bone sialoprotein (BSP), and also a marker of vasculature, alpha-smooth muscle actin (α-SMA). This study provides evidence to support CMSCs and DMSCs as cellular candidates with potent bone forming capacity.
Collapse
Affiliation(s)
- Gina D. Kusuma
- Department of Obstetrics and Gynaecology, Royal Women’s Hospital, The University of Melbourne, Parkville, Victoria, Australia
- Pregnancy Research Centre, Department of Perinatal Medicine, Royal Women’s Hospital, Parkville, Victoria, Australia
| | - Danijela Menicanin
- Mesenchymal Stem Cell Laboratory, Faculty of Health Sciences, School of Medical Sciences, University of Adelaide, Adelaide, Australia
- Colgate Australian Clinical Dental Research Centre, School of Dentistry, University of Adelaide, Adelaide, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Faculty of Health Sciences, School of Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Ursula Manuelpillai
- Pregnancy Research Centre, Department of Perinatal Medicine, Royal Women’s Hospital, Parkville, Victoria, Australia
- Centre for Genetic Diseases, Monash Institute of Medical Research-Prince Henry’s Institute of Medical Research and Monash University, Clayton, Victoria, Australia
| | - Mohamed H. Abumaree
- King Abdullah International Medical Research Center/ King Saud Bin Abdulaziz University for Health Sciences, College of Science and Health Professions, King Abdulaziz Medical City-National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Mark D. Pertile
- Victorian Clinical Genetics Services (VCGS), Murdoch Children’s Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
- Department of Paediatrics, Royal Children’s Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Shaun P. Brennecke
- Department of Obstetrics and Gynaecology, Royal Women’s Hospital, The University of Melbourne, Parkville, Victoria, Australia
- Pregnancy Research Centre, Department of Perinatal Medicine, Royal Women’s Hospital, Parkville, Victoria, Australia
| | - Bill Kalionis
- Department of Obstetrics and Gynaecology, Royal Women’s Hospital, The University of Melbourne, Parkville, Victoria, Australia
- Pregnancy Research Centre, Department of Perinatal Medicine, Royal Women’s Hospital, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
15
|
Jin H, Choung HW, Lim KT, Jin B, Jin C, Chung JH, Choung PH. Recombinant Human Plasminogen Activator Inhibitor-1 Promotes Cementogenic Differentiation of Human Periodontal Ligament Stem Cells. Tissue Eng Part A 2015; 21:2817-28. [PMID: 25808697 DOI: 10.1089/ten.tea.2014.0399] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The periodontium, consisting of gingiva, periodontal ligament (PDL), cementum, and alveolar bone, is necessary for the maintenance of tooth function. Specifically, the regenerative abilities of cementum with inserted PDL are important for the prevention of tooth loss. Periodontal ligament stem cells (PDLSCs), which are located in the connective tissue PDL between the cementum and alveolar bone, are an attractive candidate for hard tissue formation. We investigated the effects of recombinant human plasminogen activator inhibitor-1 (rhPAI-1) on cementogenic differentiation of human PDLSCs (hPDLSCs) in vitro and in vivo. Untreated and rhPAI-1-treated hPDLSCs mixed with hydroxyapatite/tricalcium phosphate (HA/TCP) and dentin matrix were transplanted subcutaneously into the dorsal surface of immunocompromised mice to assess their capacity for hard tissue formation at 8 and 10 weeks posttransplantation. rhPAI-1 accelerated mineral nodule formation and increased the mRNA expression of cementoblast-associated markers in hPDLSCs. We also observed that rhPAI-1 upregulated the levels of osterix (OSX) and cementum protein 1 (CEMP1) through Smad2/3 and p38 pathways, whereas specific inhibitors of Smad3 and p38 inhibited the enhancement of mineralization of hPDLSCs by rhPAI-1. Furthermore, transplantation of hPDLSCs with rhPAI-1 showed a great ability to promote cementogenic differentiation. Notably, rhPAI-1 induced hPDLSCs to regenerate cementum-like tissue with PDL fibers inserted into newly formed cementum-like tissue. These results suggest that rhPAI-1 may play a key role in cementogenic differentiation of hPDLSCs. rhPAI-1 with hPDLSCs may be a good candidate for future clinical applications in periodontal tissue regeneration and possibly in tooth root bioengineering.
Collapse
Affiliation(s)
- Hexiu Jin
- 1 Tooth Bioengineering Laboratory, Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University , Seoul, Korea
| | - Han-Wool Choung
- 2 Program of Cell and Developmental Biology, Department of Oral Histology and Development Biology, Dental Research Institute, School of Dentistry, Seoul National University , Seoul, Korea
| | - Ki-Taek Lim
- 3 Department of Biosystems Engineering, Agriculture and Life Sciences Research Institute, Kangwon National University , Chuncheon, Korea
| | - Bin Jin
- 1 Tooth Bioengineering Laboratory, Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University , Seoul, Korea
| | - Chengbiao Jin
- 2 Program of Cell and Developmental Biology, Department of Oral Histology and Development Biology, Dental Research Institute, School of Dentistry, Seoul National University , Seoul, Korea
| | - Jong-Hoon Chung
- 4 Department of Biomaterials Science and Engineering, Research Institute for Agriculture and Life Sciences, Seoul National University , Seoul, Korea
| | - Pill-Hoon Choung
- 1 Tooth Bioengineering Laboratory, Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University , Seoul, Korea
| |
Collapse
|
16
|
Calderoni DR, Gilioli R, Munhoz ALJ, Maciel Filho R, Zavaglia CADC, Lambert CS, Lopes ÉSN, Toro IFC, Kharmandayan P. Paired evaluation of calvarial reconstruction with prototyped titanium implants with and without ceramic coating. Acta Cir Bras 2014; 29:579-87. [DOI: 10.1590/s0102-8650201400150005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/23/2014] [Indexed: 11/21/2022] Open
|
17
|
Kim JH, Kim CJ, Shin SH. Bone Healing in Ovariectomized-rabbit Calvarial Defect with Tricalcium Phosphate Coated with Recombinant Human Bone Morphogenetic Protein-2 Genetically Engineered in Escherichia coli. Maxillofac Plast Reconstr Surg 2014; 36:37-49. [PMID: 27489809 PMCID: PMC4281909 DOI: 10.14402/jkamprs.2014.36.2.37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/03/2014] [Accepted: 02/25/2014] [Indexed: 11/17/2022] Open
Abstract
Purpose: This study compares the bone formation ability of tricalcium phosphate (TCP) with and without recombinant human bone morphogenetic protein-2 (rhBMP-2) and assesses TCP as a carrier of rhBMP-2. Methods: Bilateral round defects (diameter: 8.0 mm) were formed in the cranium of eight New Zealand white rabbits. The defects were grafted with TCP only (control group) or with rhBMP-2-coated TCP (experimental group). The animals were sacrificed at 1st week, 2nd week, 4th week, and 8th week postoperatively; two rabbits sacrificed each time. The skulls were harvested and subjected to radiographic and histological examination. Results: Radiologic evaluation showed faster bone remodeling in the experimental group than in the control group. Histologic evaluation (H&E, Masson’s trichrome stain) showed rapid bone formation, remodeling and calcification in the 1st and 2nd week in the experimental group. Immunohistochemical evaluation showed higher expression rate of osteoprotegerin, receptor activator of nuclear factor κB ligand, and receptor activator of nuclear factor κB in the experimental group at the 1st and 2nd week than in the control group. Conclusion: rhBMP-2 coated TCP resulted in rapid bone formation, remodeling, and calcification due to rhBMP-2’s osteogenic effect. TCP performed properly as a carrier for rhBMP-2. Thus, the use of an rhBMP-2 coating on TCP had a synergic effect on bone healing and, especially, bone remodeling and maturation.
Collapse
Affiliation(s)
- Jung-Han Kim
- Department of Oral and Maxillofacial Surgery, Pusan National University School of Dentistry
| | - Chang-Joo Kim
- Department of Oral and Maxillofacial Surgery, Pusan National University School of Dentistry
| | - Sang-Hun Shin
- Department of Oral and Maxillofacial Surgery, Pusan National University School of Dentistry
| |
Collapse
|
18
|
Ohgushi H. Osteogenically differentiated mesenchymal stem cells and ceramics for bone tissue engineering. Expert Opin Biol Ther 2013; 14:197-208. [PMID: 24308323 DOI: 10.1517/14712598.2014.866086] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION In the human body, cells having self-renewal and multi-differentiation capabilities reside in many tissues and are called adult stem cells. In bone marrow tissue, two types of stem cells are well known: hematopoietic stem cells and mesenchymal stem cells (MSCs). Though the number of MSCs in bone marrow tissue is very low, it can be increased by in vitro culture of the marrow, and culture-expanded MSCs are available for various tissue regeneration. AREAS COVERED The culture-expanded MSCs can further differentiate into osteogenic cells such as bone forming osteoblasts by culturing the MSCs in an osteogenic medium. This paper discusses osteogenically differentiated MSCs derived from the bone marrow of patients. Importantly, the differentiation can be achieved on ceramic surfaces which demonstrate mineralized bone matrix formation as well as appearance of osteogenic cells. The cell/matrix/ceramic constructs could show immediate in vivo bone formation and are available for bone reconstruction surgery. EXPERT OPINION Currently, MSCs are clinically available for the regeneration of various tissues due to their high proliferation/differentiation capabilities. However, the capabilities are still limited and thus technologies to improve or recover the inherent capabilities of MSCs are needed.
Collapse
Affiliation(s)
- Hajime Ohgushi
- Department Head, Ookuma Hospital, Department of Orthopedics , 2-17-13 Kuise-honmachi, Amagasaki City, Hyogo 660-0814 , Japan +81-6-6481-1667 ; +81-6-6481-4234
| |
Collapse
|
19
|
Shanmugavel S, Reddy VJ, Ramakrishna S, Lakshmi BS, Dev VG. Precipitation of hydroxyapatite on electrospun polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds for bone tissue engineering. J Biomater Appl 2013; 29:46-58. [PMID: 24287981 DOI: 10.1177/0885328213513934] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Advances in electrospun nanofibres with bioactive materials have enhanced the scope of fabricating biomimetic scaffolds for tissue engineering. The present research focuses on fabrication of polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds by electrospinning followed by hydroxyapatite deposition by calcium-phosphate dipping method for bone tissue engineering. Morphology, composition, hydrophilicity and mechanical properties of polycaprolactone/aloe vera/silk fibroin-hydroxyapatite nanofibrous scaffolds along with controls polycaprolactone and polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds were examined by field emission scanning electron microscopy, Fourier transform infrared spectroscopy, contact angle and tensile tests, respectively. Adipose-derived stem cells cultured on polycaprolactone/aloe vera/silk fibroin-hydroxyapatite nanofibrous scaffolds displayed highest cell proliferation, increased osteogenic markers expression (alkaline phosphatase and osteocalcin), osteogenic differentiation and increased mineralization in comparison with polycaprolactone control. The obtained results indicate that polycaprolactone/aloe vera/silk fibroin-hydroxyapatite nanofibrous scaffolds have appropriate physico-chemical and biological properties to be used as biomimetic scaffolds for bone tissue regeneration.
Collapse
Affiliation(s)
- Suganya Shanmugavel
- Department of Textile Technology, Anna University, Chennai, India Centre for Biotechnology, Anna University, Chennai, India
| | | | - Seeram Ramakrishna
- Nanoscience and Nanotechnology Initiative, National University of Singapore, Singapore
| | - B S Lakshmi
- Centre for Biotechnology, Anna University, Chennai, India
| | - Vr Giri Dev
- Department of Textile Technology, Anna University, Chennai, India
| |
Collapse
|
20
|
Ding C, Qiao Z, Jiang W, Li H, Wei J, Zhou G, Dai K. Regeneration of a goat femoral head using a tissue-specific, biphasic scaffold fabricated with CAD/CAM technology. Biomaterials 2013; 34:6706-16. [DOI: 10.1016/j.biomaterials.2013.05.038] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 05/21/2013] [Indexed: 02/07/2023]
|
21
|
Wagner-Ecker M, Voltz P, Egermann M, Richter W. The collagen component of biological bone graft substitutes promotes ectopic bone formation by human mesenchymal stem cells. Acta Biomater 2013; 9:7298-307. [PMID: 23542556 DOI: 10.1016/j.actbio.2013.03.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/06/2013] [Accepted: 03/23/2013] [Indexed: 12/13/2022]
Abstract
Synthetic bone substitutes are attractive materials for repairing a variety of bone defects. They are readily available in unlimited quantities, have a defined composition without batch variability and bear no risk of disease transmission. When combined with mesenchymal stem cells (MSCs), bone healing can be further enhanced due to the osteogenic potential of these cells. However, human MSCs showed considerable donor variability in ectopic bone formation assays on synthetic bone substitutes, which may limit clinical success. This study addresses whether bone formation variability of MSCs is cell-intrinsic or biomaterial-dependent and may be improved using biological bone substitutes with and without collagen. Ectopic bone formation of MSCs from nine donors was tested in immune-deficient mice on biological bone substitutes of bovine and equine origin, containing collagen (bHA-C; eHA-C) or not (bHA; eHA). Synthetic β-TCP was used for comparison. Histology of 8-week explants demonstrated a significant influence of the bone graft substitute (BGS) on donor variability of ectopic bone formation with best results seen for eHA-C (15/17) and β-TCP (16/18). Bone was of human origin in all groups according to species-specific in situ hybridization, but MSCs from one donor formed no bone with any bone substitute. According to histomorphometry, most neo-bone was formed on eHA-C with significant differences to bHA, eHA and β-TCP (p<0.001). Collagen-free biological BGSs were inferior to biological BGSs with collagen (p<0.001), while species-origin was of little influence. In conclusion, BGS composition had a strong influence on ectopic bone formation ability of MSCs, and biological BGSs with a collagen component seem most promising to display the strong osteogenic potential of MSCs.
Collapse
|
22
|
D'Antò V, Raucci MG, Guarino V, Martina S, Valletta R, Ambrosio L. Behaviour of human mesenchymal stem cells on chemically synthesized HA-PCL scaffolds for hard tissue regeneration. J Tissue Eng Regen Med 2013; 10:E147-54. [PMID: 23723157 DOI: 10.1002/term.1768] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 03/13/2013] [Accepted: 04/13/2013] [Indexed: 01/09/2023]
Abstract
Our goal was to characterize the response of human mesenchymal stem cells (hMSCs) to a novel composite scaffold for bone tissue engineering. The hydroxyapatite-polycaprolactone (HA-PCL) composite scaffolds were prepared by a sol-gel method at room temperature and the scaffold morphology was investigated by scanning electron microscopy (SEM)/energy-dispersive spectroscopy (EDS) to validate the synthesis process. The response of two different lines of hMSCs, bone-marrow-derived human mesenchymal stem cells (BMSCs) and dental pulp stem cells (DPSCs) in terms of cell proliferation and differentiation into the osteoblastic phenotype, was evaluated using Alamar blue assay, SEM, histology and alkaline phosphatase activity. Our results indicate that tissue engineering by means of composite HA-PCL scaffolds may represent a new therapeutic strategy to repair craniofacial bone defects.
Collapse
Affiliation(s)
- Vincenzo D'Antò
- Institute of Composite and Biomedical Materials (IMCB), National Research Council of Italy (CNR), Naples, Italy.,Department of Neurosciences, Reproductive Sciences and Oral Sciences, University of Naples 'Federico II', Italy.,Department of Pediatric Surgery and Transplantation, Bambino Gesù Children's Hospital, Rome, Italy
| | - Maria Grazia Raucci
- Institute of Composite and Biomedical Materials (IMCB), National Research Council of Italy (CNR), Naples, Italy
| | - Vincenzo Guarino
- Institute of Composite and Biomedical Materials (IMCB), National Research Council of Italy (CNR), Naples, Italy
| | - Stefano Martina
- Department of Neurosciences, Reproductive Sciences and Oral Sciences, University of Naples 'Federico II', Italy
| | - Rosa Valletta
- Department of Neurosciences, Reproductive Sciences and Oral Sciences, University of Naples 'Federico II', Italy
| | - Luigi Ambrosio
- Institute of Composite and Biomedical Materials (IMCB), National Research Council of Italy (CNR), Naples, Italy
| |
Collapse
|
23
|
Wang X, Ito A, Li X, Sogo Y, Hirose M, Oyane A, Tsurushima H. DNA-lipid-apatite composite layers enhance gene expression of mesenchymal stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:512-8. [DOI: 10.1016/j.msec.2012.09.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 07/27/2012] [Accepted: 09/25/2012] [Indexed: 10/27/2022]
|
24
|
Nakano T, Kaibara K, Ishimoto T, Tabata Y, Umakoshi Y. Biological apatite (BAp) crystallographic orientation and texture as a new index for assessing the microstructure and function of bone regenerated by tissue engineering. Bone 2012; 51:741-7. [PMID: 22796590 DOI: 10.1016/j.bone.2012.07.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 06/18/2012] [Accepted: 07/03/2012] [Indexed: 11/20/2022]
Abstract
Recently, there have been remarkable advances in medical techniques for regenerating bone defects. To determine the degree of bone regeneration, it is essential to develop a new method that can analyze microstructure and related mechanical function. Here, quantitative analysis of the orientation distribution of biological apatite (BAp) crystallites by a microbeam X-ray diffractometer system is proposed as a new index of bone quality for the evaluation of regenerated bone microstructure. Preferential alignment of the BAp c-axis in the rabbit ulna and skull bone, regenerated by controlled release of basic fibroblast growth factor (bFGF) was investigated. The BAp c-axis orientation was evaluated by the relative intensity between the (002) and (310) diffraction peaks, or the three-dimensional texture for the (002) peak. It was found that new bone in the defects was initially produced without preferential alignment of the BAp c-axis, and subsequently reproduced to recover towards the original alignment. In other words, the BAp density recovered prior to the BAp orientation. Perfect recovery of BAp alignment was not achieved in the ulna and skull defects after 4 weeks and 12 weeks, respectively. Apparent recovery of the macroscopic shape and bio-mineralization of BAp was almost complete in the ulna defect after 4 weeks. However, an additional 2 weeks was required for complete repair of BAp orientation. It is finally concluded that orientation distribution of BAp crystallites offers an effective means of evaluating the degree of microstructural regeneration, and also the related mechanical function, in regenerated hard tissues.
Collapse
Affiliation(s)
- Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | |
Collapse
|
25
|
Peng F, Shaw MT, Olson JR, Wei M. Influence of surface treatment and biomimetic hydroxyapatite coating on the mechanical properties of hydroxyapatite/poly(L-lactic acid) fibers. J Biomater Appl 2012; 27:641-9. [DOI: 10.1177/0885328211419873] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Poly(L-lactic acid) (PLLA) micro-fibers have been coated with hydroxyapatite (HA) using a quick biomimetic method to form a precursor for bone repair composites. To increase the coating content within a coating time as short as 1–2.5 h, PLLA fibers have been treated by soaking in NaOH or NaOCl solutions at mild conditions. Although different surface hydrolysis and coating methods have been used to prepare bioceramic/polymer composites, it is for the first time that the influences of the surface treatment and HA coating process on the mechanical properties of the polymer and HA/polymer composite fibers were investigated systemically.
Collapse
Affiliation(s)
- Fei Peng
- Department of Chemical, Materials, and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Montgomery T Shaw
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA
| | - James R Olson
- Teleflex Medical, 1295 Main Street, P. O. Box 219, Coventry, Connecticut 06238, USA
| | - Mei Wei
- Department of Chemical, Materials, and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
26
|
Przybylowski C, Quinn T, Callahan A, Kaplan M, Golding A, Alesi C, Ammar M, LeBlon CE, Guo Y, Zhang X, Jedlicka SS. MC3T3 preosteoblast differentiation on bone morphogenetic protein-2 peptide ormosils. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm16490f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
27
|
Lew KS, Othman R, Ishikawa K, Yeoh FY. Macroporous bioceramics: A remarkable material for bone regeneration. J Biomater Appl 2011; 27:345-58. [DOI: 10.1177/0885328211406459] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review summarises the major developments of macroporous bioceramics used mainly for repairing bone defects. Porous bioceramics have been receiving attention ever since their larger surface area was reported to be beneficial for the formation of more rigid bonds with host tissues. The study of porous bioceramics is important to overcome the less favourable bonds formed between dense bioceramics and host tissues, especially in healing bone defects. Macroporous bioceramics, which have been studied extensively, include hydroxyapatite, tricalcium phosphate, alumina, and zirconia. The pore size and interconnections both have significant effects on the growth rate of bone tissues. The optimum pore size of hydroxyapatite scaffolds for bone growth was found to be 300 µm. The existence of interconnections between pores is critical during the initial stage of tissue ingrowth on porous hydroxyapatite scaffolds. Furthermore, pore formation on β-tricalcium phosphate scaffolds also allowed the impregnation of growth factors and cells to improve bone tissues growth significantly. The formation of vascularised tissues was observed on macroporous alumina but did not take place in the case of dense alumina due to its bioinert nature. A macroporous alumina coating on scaffolds was able to improve the overall mechanical properties, and it enabled the impregnation of bioactive materials that could increase the bone growth rate. Despite the bioinertness of zirconia, porous zirconia was useful in designing scaffolds with superior mechanical properties after being coated with bioactive materials. The pores in zirconia were believed to improve the bone growth on the coated system. In summary, although the formation of pores in bioceramics may adversely affect mechanical properties, the advantages provided by the pores are crucial in repairing bone defects.
Collapse
Affiliation(s)
- Kien-Seng Lew
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, 14300 Penang, Malaysia
| | - Radzali Othman
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, 14300 Penang, Malaysia
| | - Kunio Ishikawa
- Faculty of Dental Science, Department of Biomaterials, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Fei-Yee Yeoh
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, 14300 Penang, Malaysia
| |
Collapse
|
28
|
Kim BJ, Kwon TK, Baek HS, Hwang DS, Kim CH, Chung IK, Jeong JS, Shin SH. A comparative study of the effectiveness of sinus bone grafting with recombinant human bone morphogenetic protein 2-coated tricalcium phosphate and platelet-rich fibrin-mixed tricalcium phosphate in rabbits. Oral Surg Oral Med Oral Pathol Oral Radiol 2011; 113:583-92. [PMID: 22676983 DOI: 10.1016/j.tripleo.2011.04.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/06/2011] [Accepted: 04/24/2011] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The objective of this histologic study was to evaluate platelet-rich fibrin (PRF)-mixed tricalcium phosphate (TCP) and recombinant human bone morphogenic protein 2 (rhBMP-2)-coated TCP in their potential to enhance bone regeneration in sinus elevation in rabbits as well as in their inflammatory features. STUDY DESIGN Bilateral round-shaped defects (diameter 8.0 mm) were formed in the maxillary anterior sinus walls of 36 New Zealand white rabbits. The defects were grafted with TCP only (control group), with rhBMP-2-coated TCP (experimental group A) and with PRF-mixed TCP (experimental group B). Each group included 12 rabbits. The animals were killed at 3 days, 1 week, 2 weeks, 4 weeks, 6 weeks, and 8 weeks. The specimens underwent decalcification and were stained for histologic analysis. RESULTS There were no significant differences in inflammatory features among the groups at 3 days or the first week after operation. In a histomorphometric analysis, the new bone formation ratio showed significant differentiation between groups A and B. The TCP-only control group showed a relatively lower bone formation ratio rather than the experimental groups. The PRF-mixed TCP group showed a larger bone formation area, compared with both the control group and group A. CONCLUSIONS In the results of the histologic evaluation (hematoxylin-eosin, Masson trichrome stain), the experimental groups A and B showed rapid bone formation, remodeling, and calcification in the second week. Moreover, there was a significant difference between those experimental groups and the control group in the new bone formation area at the fourth, sixth, and eighth weeks. The PRF-mixed TCP showed more rapid bone healing than the rhBMP-2-coated TCP or the TCP-only control.
Collapse
Affiliation(s)
- Bok-Joo Kim
- Department of Oral and Maxillofacial Surgery, Dong-A University Medical Center, Busan, Korea
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Wang X, Oyane A, Tsurushima H, Sogo Y, Li X, Ito A. BMP-2 and ALP gene expression induced by a BMP-2 gene-fibronectin-apatite composite layer. Biomed Mater 2011; 6:045004. [PMID: 21636885 DOI: 10.1088/1748-6041/6/4/045004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The bone morphogenetic protein 2 (BMP-2) gene delivery system with a gene-fibronectin (Fn)-apatite composite layer was fabricated on the surface of a hydroxyapatite ceramic scaffold. The BMP-2 gene-Fn-apatite composite layer was coated on the scaffold using a supersaturated calcium phosphate solution supplemented with BMP-2 DNA and Fn. The scaffolds were ectopically implanted into the dorsal subcutaneous tissue of rats. Four weeks after the implantation, the hydroxyapatite scaffold coated with the BMP-2 gene-Fn-apatite composite layer showed improved gene expressions of BMP-2 and alkaline phosphatase as compared with the scaffold coated with the apatite layer. Although these results suggest the possibility of ectopic bone formation induced by the present gene delivery system, further study is necessary to prove this.
Collapse
Affiliation(s)
- Xiupeng Wang
- Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | | | | | | | | | | |
Collapse
|
30
|
Peng F, Yu X, Wei M. In vitro cell performance on hydroxyapatite particles/poly(L-lactic acid) nanofibrous scaffolds with an excellent particle along nanofiber orientation. Acta Biomater 2011; 7:2585-92. [PMID: 21333762 DOI: 10.1016/j.actbio.2011.02.021] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 02/10/2011] [Accepted: 02/13/2011] [Indexed: 11/25/2022]
Abstract
Highly porous hydroxyapatite (HA)/poly(L-lactide) (PLLA) nanofibrous scaffolds were prepared by incorporating needle-shaped nano- or micro-sized HA particles into PLLA nanofibers using electrospinning. The scaffolds had random or aligned fibrous assemblies and both types of HA particles were perfectly oriented along the fiber long axes. The biocompatibility and cell signaling properties of these scaffolds were evaluated by in vitro culture of rat osteosarcoma ROS17/2.8 cells on the scaffold surface. Cell morphology, viability and alkaline phosphatase (ALP) activity on each scaffold were examined at different time points. The HA/PLLA scaffolds exhibited higher cell viability and ALP activity than a pure PLLA scaffold. In addition, micro-sized HA particles supported cell proliferation and differentiation better than nano-sized ones in random scaffolds through a 10 day culture period and in aligned scaffolds at an early culture stage. The fibrous assembly of the scaffold had a pronounced impact on the morphology of the cells in direct contact with the scaffold surface, but not on cell proliferation and differentiation. Thus, HA/PLLA nanofibrous scaffolds could be good candidates for bone tissue engineering.
Collapse
|
31
|
Jo YJ, Kim KH, Koo KT, Kim TI, Seol YJ, Lee YM, Ku Y, Chung CP, Rhyu IC. Initial adhesion of bone marrow stromal cells to various bone graft substitutes. J Periodontal Implant Sci 2011; 41:67-72. [PMID: 21556256 PMCID: PMC3087077 DOI: 10.5051/jpis.2011.41.2.67] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2011] [Accepted: 02/09/2011] [Indexed: 11/11/2022] Open
Abstract
Purpose The aim of this study is to determine whether certain biomaterials have the potential to support cell attachment. After seeding bone marrow stromal cells onto the biomaterials, we investigated their responses to each material in vitro. Methods Rat bone marrow derived stromal cells were used. The biomaterials were deproteinized bovine bone mineral (DBBM), DBBM coated with fibronectin (FN), synthetic hydroxyapatite (HA), HA coated with FN, HA coated with β-tricalcium phosphate (TCP), and pure β-TCP. With confocal laser scanning microscopy, actin filaments and vinculin were observed after 6, 12, and 24 hours of cell seeding. The morphological features of cells on each biomaterial were observed using scanning electron microscopy at day 1 and 7. Results The cells on HA/FN and HA spread widely and showed better defined actin cytoskeletons than those on the other biomaterials. At the initial phase, FN seemed to have a favorable effect on cell adhesion. In DBBM, very few cells adhered to the surface. Conclusions Within the limitations of this study, we can conclude that in contrast with DBBM not supporting cell attachment, HA provided a more favorable environment with respect to cell attachment.
Collapse
Affiliation(s)
- Young-Jae Jo
- Department of Periodontology, Seoul National University School of Dentistry, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Boyan BD, Schwartz Z. Regenerative medicine: Are calcium phosphate ceramics 'smart' biomaterials? Nat Rev Rheumatol 2011; 7:8-9. [PMID: 21206482 DOI: 10.1038/nrrheum.2010.210] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
33
|
A scaffold-free in vitro model for osteogenesis of human mesenchymal stem cells. Tissue Cell 2011; 43:91-100. [PMID: 21329953 DOI: 10.1016/j.tice.2010.12.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 12/21/2010] [Accepted: 12/27/2010] [Indexed: 11/21/2022]
Abstract
For studying cellular processes three-dimensional (3D) in vitro models are of a high importance. For tissue engineering approaches osseous differentiation is performed on 3D scaffolds, but material depending influences promote cellular processes like adhesion, proliferation and differentiation. To investigate developmental processes of mesenchymal stem cells without cell-substrate interactions, self-contained in vitro models mimicking physiological condition are required. However, with respect to scientific investigations and pharmaceutical tests, it is essential that these tissue models are well characterised and are of a high reproducibility. In order to establish an appropriate in vitro model for bone formation, different protocols are compared and optimised regarding their aggregate formation efficiency, homogeneity of the aggregates, the viability and their ability to induce differentiation into the osteogenic lineage. The protocols for the generation of 3D cell models are based on rotation culture, hanging drop technique, and the cultivation in non adhesive culture vessels (single vessels as well as 96 well plates). To conclude, the cultivation of hMSCs in 96 well non adhesive plates facilitates an easy way to cultivate homogenous cellular aggregates with high performance efficiency in parallel. The size can be controlled by the initial cell density per well and within this spheroids, bone formation has been induced.
Collapse
|
34
|
Langstaff S, Sayer M, Smith T, Pugh S. Resorbable Synthetic Bone Grafts Formed From a Silicon Stabilized Calcium Phosphate Bioceramic. ACTA ACUST UNITED AC 2011. [DOI: 10.1557/proc-550-313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractSynthetic bone grafts resistant to random dissolution at physiological pH, yet capable of being gradually resorbed in vitro by osteoclasts have been created. Bulk ceramics and ceramic coatings formed from an additive stabilized colloidal sol possess two characteristic features: a phase mixture of calcium hydroxyapatite (HA) and a silicon stabilized tricalcium phosphate, and a microporous morphology based on inter-connected particles (0.2-1.0 μm). The characteristic phase composition arises during sintering through substitution reactions where silicon enters the calcium phosphate lattice under conditions of high chemical reactivity. Evidence for in vitro resorption lacunae on bulk ceramics is presented.
Collapse
|
35
|
Solchaga LA, Penick KJ, Welter JF. Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells: tips and tricks. Methods Mol Biol 2011; 698:253-78. [PMID: 21431525 PMCID: PMC3106977 DOI: 10.1007/978-1-60761-999-4_20] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
It is well known that adult cartilage lacks the ability to repair itself; this makes articular cartilage a very attractive target for tissue engineering. The majority of articular cartilage repair models attempt to deliver or recruit reparative cells to the site of injury. A number of efforts are directed to the characterization of progenitor cells and the understanding of the mechanisms involved in their chondrogenic differentiation. Our laboratory has focused on cartilage repair using mesenchymal stem cells and studied their differentiation into cartilage. Mesenchymal stem cells are attractive candidates for cartilage repair due to their osteogenic and chondrogenic potential, ease of harvest, and ease of expansion in culture. However, the need for chondrogenic differentiation is superposed on other technical issues associated with cartilage repair; this adds a level of complexity over using mature chondrocytes. This chapter will focus on the methods involved in the isolation and expansion of human mesenchymal stem cells, their differentiation along the chondrogenic lineage, and the qualitative and quantitative assessment of chondrogenic differentiation.
Collapse
Affiliation(s)
- Luis A Solchaga
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| | | | | |
Collapse
|
36
|
Wilson CE, van Blitterswijk CA, Verbout AJ, Dhert WJA, de Bruijn JD. Scaffolds with a standardized macro-architecture fabricated from several calcium phosphate ceramics using an indirect rapid prototyping technique. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:97-105. [PMID: 21069558 PMCID: PMC3019353 DOI: 10.1007/s10856-010-4183-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Accepted: 10/25/2010] [Indexed: 05/30/2023]
Abstract
Calcium phosphate ceramics, commonly applied as bone graft substitutes, are a natural choice of scaffolding material for bone tissue engineering. Evidence shows that the chemical composition, macroporosity and microporosity of these ceramics influences their behavior as bone graft substitutes and bone tissue engineering scaffolds but little has been done to optimize these parameters. One method of optimization is to place focus on a particular parameter by normalizing the influence, as much as possible, of confounding parameters. This is difficult to accomplish with traditional fabrication techniques. In this study we describe a design based rapid prototyping method of manufacturing scaffolds with virtually identical macroporous architectures from different calcium phosphate ceramic compositions. Beta-tricalcium phosphate, hydroxyapatite (at two sintering temperatures) and biphasic calcium phosphate scaffolds were manufactured. The macro- and micro-architectures of the scaffolds were characterized as well as the influence of the manufacturing method on the chemistries of the calcium phosphate compositions. The structural characteristics of the resulting scaffolds were remarkably similar. The manufacturing process had little influence on the composition of the materials except for the consistent but small addition of, or increase in, a beta-tricalcium phosphate phase. Among other applications, scaffolds produced by the method described provide a means of examining the influence of different calcium phosphate compositions while confidently excluding the influence of the macroporous structure of the scaffolds.
Collapse
Affiliation(s)
- C. E. Wilson
- Division of Surgical Specialties, Department of Orthopaedics, University Medical Center Utrecht, G05.228, PO Box 85500, 3508 GA Utrecht, The Netherlands
| | - C. A. van Blitterswijk
- Department of Tissue Regeneration, Institute for Biomedical Technology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - A. J. Verbout
- Division of Surgical Specialties, Department of Orthopaedics, University Medical Center Utrecht, G05.228, PO Box 85500, 3508 GA Utrecht, The Netherlands
| | - W. J. A. Dhert
- Division of Surgical Specialties, Department of Orthopaedics, University Medical Center Utrecht, G05.228, PO Box 85500, 3508 GA Utrecht, The Netherlands
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - J. D. de Bruijn
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS UK
| |
Collapse
|
37
|
Suárez-González D, Barnhart K, Saito E, Vanderby R, Hollister SJ, Murphy WL. Controlled nucleation of hydroxyapatite on alginate scaffolds for stem cell-based bone tissue engineering. J Biomed Mater Res A 2010; 95:222-34. [PMID: 20574984 DOI: 10.1002/jbm.a.32833] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Current bone tissue engineering strategies aim to grow a tissue similar to native bone by combining cells and biologically active molecules with a scaffold material. In this study, a macroporous scaffold made from the seaweed-derived polymer alginate was synthesized and mineralized for cell-based bone tissue engineering applications. Nucleation of a bone-like hydroxyapatite mineral was achieved by incubating the scaffold in modified simulated body fluids (mSBF) for 4 weeks. Analysis using scanning electron microscopy and energy dispersive x-ray analysis indicated growth of a continuous layer of mineral primarily composed of calcium and phosphorous. X-ray diffraction analysis showed peaks associated with hydroxyapatite, the major inorganic constituent of human bone tissue. In addition to the mineral characterization, the ability to control nucleation on the surface, into the bulk of the material, or on the inner pore surfaces of scaffolds was demonstrated. Finally, human MSCs attached and proliferated on the mineralized scaffolds and cell attachment improved when seeding cells on mineral coated alginate scaffolds. This novel alginate- HAP composite material could be used in bone tissue engineering as a scaffold material to deliver cells, and perhaps also biologically active molecules.
Collapse
|
38
|
Debye function analysis and 2D imaging of nanoscaled engineered bone. Biomaterials 2010; 31:8289-98. [DOI: 10.1016/j.biomaterials.2010.07.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 07/09/2010] [Indexed: 11/20/2022]
|
39
|
Kretlow JD, Spicer PP, Jansen JA, Vacanti CA, Kasper FK, Mikos AG. Uncultured marrow mononuclear cells delivered within fibrin glue hydrogels to porous scaffolds enhance bone regeneration within critical-sized rat cranial defects. Tissue Eng Part A 2010; 16:3555-68. [PMID: 20715884 DOI: 10.1089/ten.tea.2010.0471] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
For bone tissue engineering, the benefits of incorporating mesenchymal stem cells (MSCs) into porous scaffolds are well established. There is, however, little consensus on the effects of or need for MSC handling ex vivo. Culture and expansion of MSCs adds length and cost, and likely increases risk associated with treatment. We evaluated the effect of using uncultured bone marrow mononuclear cells (bmMNCs) encapsulated within fibrin glue hydrogels and seeded into porous scaffolds to regenerate bone over 12 weeks in an 8-mm-diameter, critical-sized rat cranial defect. A full factorial experimental design was used to evaluate bone formation within model poly(L-lactic acid) and corraline hydroxyapatite scaffolds with or without platelet-rich plasma (PRP) and bmMNCs. Mechanical push-out testing, microcomputed tomographical analyses, and histology were performed. PRP showed no benefit for bone formation. Cell-laden poly(L-lactic acid) scaffolds without PRP required significantly greater force to displace from surrounding tissues than control (cell-free) scaffolds, but no differences were observed during push-out testing of coral scaffolds. For bone volume formation as analyzed by microcomputed tomography, significant positive overall effects were observed with bmMNC incorporation. These data suggest that bmMNCs may provide therapeutic advantages in bone tissue engineering applications without the need for culture, expansion, and purification.
Collapse
Affiliation(s)
- James D Kretlow
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|
40
|
Wang Y, Shi X, Ren L, Yao Y, Wang DA. In vitro osteogenesis of synovium mesenchymal cells induced by controlled release of alendronate and dexamethasone from a sintered microspherical scaffold. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2010; 21:1227-38. [PMID: 20507717 DOI: 10.1163/092050609x12481751806259] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In vitro osteogenesis was successfully achieved with synovium-derived mesenchymal stem cells (SMSCs), which intrinsically have a strong chondrogenic tendency, by in situ release of alendronate (AL) and dexamethasone (Dex) from poly(lactic-co-glycolic acid) (PLGA)/hydroxyapatite (HA) sintered microspherical scaffold (PLGA/HA-SMS). Cumulative release profiles of AL and Dex from PLGA/HA-SMS and the influence on SMSCs osteogenic commitment were investigated. SMSCs seeded in Al-/Dex-loaded PLGA/HA-SMS (PLGA/HA-Com-SMS) exhibited significant osteogenic differentiation, as indicated by high yields of alkaline phosphatase (ALP) and bone calcification. In addition, mechanical properties (compressional) of PLGA/HA-Com-SMSs were also evaluated and approved. In conclusion, by promoting osteogenic commitment of SMSCs in vitro, this newly designed controlled-release system opens a new door to bone reparation and regeneration.
Collapse
Affiliation(s)
- Yingjun Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | | | | | | | | |
Collapse
|
41
|
Janicki P, Kasten P, Kleinschmidt K, Luginbuehl R, Richter W. Chondrogenic pre-induction of human mesenchymal stem cells on beta-TCP: enhanced bone quality by endochondral heterotopic bone formation. Acta Biomater 2010; 6:3292-301. [PMID: 20123138 DOI: 10.1016/j.actbio.2010.01.037] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 01/21/2010] [Accepted: 01/25/2010] [Indexed: 12/21/2022]
Abstract
New techniques to heal bone defects include the combination of bone substitute materials with mesenchymal stem cells (MSC). To find solutions not hampered by low material resorbability or high donor variability of human MSC, the potency of such composites is usually evaluated by heterotopic bone formation assays in immunocompromised animals. The aim of this study was to investigate whether resorbable phase-pure beta-tricalcium-phosphate (beta-TCP) could support heterotopic bone formation by MSC comparable to partially resorbable hydroxyapatite/tricalcium-phosphate (HA/TCP). Furthermore, in light of disappointing results with osteogenic in vitro priming of MSC, we tested whether chondrogenic pre-induction of constructs may allow for enhanced bone formation by triggering the endochondral pathway. beta-TCP granules of three different sizes and HA/TCP were seeded with MSC and transplanted subcutaneously into immunocompromised mice either immediately or after a chondrogenic pre-induction for 6 weeks. After 8 weeks, explants were analysed by histology. beta-TCP seeded with unprimed MSC revealed intramembranous bone formation without haematopoietic marrow with 3.8-fold more bone formed with granules smaller than 0.7 mm than with 0.7-1.4mm particles (p< or =0.018). Chondrogenic pre-induction of beta-TCP/MSC composites resulted in collagen type II and proteoglycan-rich cartilage-like tissue which, after transplantation, underwent endochondral ossification, yielding ectopic bone produced by human cells while haematopoietic marrow was derived from the mouse. Transdifferentiation of MSC-derived chondrocytes to osteoblasts or direct osteogenesis of cartilage-resident MSC is postulated to explain the human origin of new bone. In conclusion, beta-TCP was significantly more osteo-permissive (p=0.004) than HA/TCP for human MSC, and chondrogenic priming of beta-TCP/MSC represented a superior approach capable of supporting full bone formation, including marrow organization.
Collapse
Affiliation(s)
- Patricia Janicki
- Division of Experimental Orthopaedics, Orthopaedic University Hospital of Heidelberg, Schlierbacher Landstrasse 200a, D-69118 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
42
|
Guagliardi A, Giannini C, Cedola A, Mastrogiacomo M, Ladisa M, Cancedda R. Toward the x-ray microdiffraction imaging of bone and tissue-engineered bone. TISSUE ENGINEERING PART B-REVIEWS 2010; 15:423-42. [PMID: 19537948 DOI: 10.1089/ten.teb.2009.0034] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The hierarchical structure of bone makes the X-ray microdiffraction scanning techniques one of the most effective tool to investigate the structural features of this tissue at different length scales: the atomic/nanometer scale of the X-ray scattering signals and the macroscopic scale of the scanned sample area. The potentiality of the microdiffraction approach has been verified also by investigations on tissue-engineered bone substitutes used to repair large hard bone defects. The aim of this review is to present the most representative and recent results obtained through high-resolution scanning microdiffraction techniques studying both natural and tissue-engineered bone. The rapid evolution of the instrumental set-ups and the advanced methods of data analysis are described. Recent examples in which X-ray microbeams were used for imaging quantitative features of natural bone tissue and engineered bone substitutes are presented along with the qualitative and quantitative information extracted from the two-dimensional patterns collected on bone samples and on ex vivo cell seeded bioceramic implants. Thanks to the microdiffraction approach, several aspects of the mechanisms leading to the generation of the new bone, coupled to the scaffold resorption in the tissue-engineered constructs, have been tentatively interpreted. The potential of X-ray microdiffraction as an imaging tool in the field of bone tissue engineering is discussed and the key role of high-spatial resolution, availability of automatic tools (for dealing with the huge amount of experimental data) and advanced analysis techniques is elucidated. Finally, future perspectives in the field are presented.
Collapse
|
43
|
Bone Tissue Engineering Using Porous Carbonate Apatite and Bone Marrow Cells. J Craniofac Surg 2010; 21:473-8. [DOI: 10.1097/scs.0b013e3181cfea6d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
44
|
Shi X, Ren L, Tian M, Yu J, Huang W, Du C, Wang DA, Wang Y. In vivo and in vitro osteogenesis of stem cells induced by controlled release of drugs from microspherical scaffolds. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/c0jm00976h] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
A comparison of posterolateral lumbar fusion comparing autograft, autogenous laminectomy bone with bone marrow aspirate, and calcium sulphate with bone marrow aspirate: a prospective randomized study. Spine (Phila Pa 1976) 2009; 34:2715-9. [PMID: 19940728 DOI: 10.1097/brs.0b013e3181b47232] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A prospective clinical study. OBJECTIVE To evaluate whether the fusion rate of autogenous laminectomy bone chips and calcium sulfate pellets could be augmented by bone marrow aspirate (BMA) in one-level lumbar posterolateral fusion. SUMMARY OF BACKGROUND DATA An in vivo animal study has indicated that BMA augments spinal arthrodesis. METHODS Forty-three patients undergoing surgery for instrumented one-level fusion with decompression were divided into 2 groups. Autologous iliac crest bone graft (ICBG) was placed in 1 posterolateral gutter (control), while on the other side (test), an equal quantity of laminectomy bone chips mixed with BMA while harvesting the iliac bone graft (group 1) or an equal quantity of calcium sulfate pellets soaked in BMA (group 2) was placed. Radiographic assessment was performed every 3 months (3-12 months) and then annually. The statuses of fusion on either side of the vertebra were compared. RESULTS For the 21 patients in group 1, 18 (85.7%) exhibited bone fusion on the test side, and 19 (90.5%) presented evidence of fusion on the control side. Thus, the test side with laminectomy bone chips and BMA achieved a fusion rate similar to that on the control side (P > 0.05). For the 22 patients in group 2, 20 (90.9%) exhibited bone fusion on the control side whereas only 10 (45.5%) demonstrated complete fusion on the test side (P < 0.05), where calcium sulfate and BMA was applied. CONCLUSION ICBG performs as expected with high fusion rates and laminectomy bone with BMA performs equally as well. Osteoset is significantly inferior to ICBG despite the addition of BMA, which is osteoinductive and has improved fusion rates and osteogenesis in other models.
Collapse
|
46
|
Matsushima A, Kotobuki N, Tadokoro M, Kawate K, Yajima H, Takakura Y, Ohgushi H. In vivo osteogenic capability of human mesenchymal cells cultured on hydroxyapatite and on beta-tricalcium phosphate. Artif Organs 2009; 33:474-81. [PMID: 19473144 DOI: 10.1111/j.1525-1594.2009.00749.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The aim of the current study was to examine in vitro osteogenic capability and in vivo bone formation of mesenchymal stromal cells (MSCs) on two kinds of calcium phosphate ceramics. MSCs derived from human bone marrow were seeded on either hydroxyapatite (HA) ceramic or beta-tricalcium phosphate (beta-TCP) ceramic and then cultured in a medium supplemented with a donor's serum, vitamin C, beta-glycerophosphate, and dexamethasone. The culture revealed the expression of alkaline phosphatase activity, indicating the osteogenic differentiation of the MSCs on the ceramics (fabrication of tissue-engineered construct). The constructs were then implanted subcutaneously into nude rats for 8 weeks. New bone formation was observed in both types of ceramics, and human-specific Alu sequence was detected by in situ hybridization analysis. Quantitative microcomputed tomography showed that the volume of the new bone in the HA ceramic was greater than that in the beta-TCP ceramic in six of seven cases. These results suggest that human MSCs cultured on ceramics could retain their osteogenic capability even after ectopic implantation and provide a rationale for the use of tissue-engineered constructs derived from a patient's MSCs and calcium phosphate ceramics in bone tissue regeneration.
Collapse
Affiliation(s)
- Asako Matsushima
- Research Institute for Cell Engineering (RICE), National Institute of Advanced Industrial Science and Technology (AIST), Amagasaki, Hyogo, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Rau J, Generosi A, Ferro D, Minozzi F, Paci B, Albertini VR, Dolci G, Barinov S. In situ time-resolved X-ray diffraction study of evolution of nanohydroxyapatite particles in physiological solution. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2009. [DOI: 10.1016/j.msec.2008.09.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Scheller EL, Krebsbach PH, Kohn DH. Tissue engineering: state of the art in oral rehabilitation. J Oral Rehabil 2009; 36:368-89. [PMID: 19228277 DOI: 10.1111/j.1365-2842.2009.01939.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
More than 85% of the global population requires repair or replacement of a craniofacial structure. These defects range from simple tooth decay to radical oncologic craniofacial resection. Regeneration of oral and craniofacial tissues presents a formidable challenge that requires synthesis of basic science, clinical science and engineering technology. Identification of appropriate scaffolds, cell sources and spatial and temporal signals (the tissue engineering triad) is necessary to optimize development of a single tissue, hybrid organ or interface. Furthermore, combining the understanding of the interactions between molecules of the extracellular matrix and attached cells with an understanding of the gene expression needed to induce differentiation and tissue growth will provide the design basis for translating basic science into rationally developed components of this tissue engineering triad. Dental tissue engineers are interested in regeneration of teeth, oral mucosa, salivary glands, bone and periodontium. Many of these oral structures are hybrid tissues. For example, engineering the periodontium requires growth of alveolar bone, cementum and the periodontal ligament. Recapitulation of biological development of hybrid tissues and interfaces presents a challenge that exceeds that of engineering just a single tissue. Advances made in dental interface engineering will allow these tissues to serve as model systems for engineering other tissues or organs of the body. This review will begin by covering basic tissue engineering principles and strategic design of functional biomaterials. We will then explore the impact of biomaterials design on the status of craniofacial tissue engineering and current challenges and opportunities in dental tissue engineering.
Collapse
Affiliation(s)
- E L Scheller
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | | | | |
Collapse
|
49
|
Influence des membranes induites sur l’ostéogenèse hétérotopique au sein d’un complexe ostéo-inducteur. Étude expérimentale chez le lapin. ANN CHIR PLAST ESTH 2009; 54:16-20. [DOI: 10.1016/j.anplas.2008.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 07/25/2008] [Indexed: 11/18/2022]
|
50
|
Affiliation(s)
- Racquel Zapanta LeGeros
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, 345 East 24th Street, New York, New York 10010, USA.
| |
Collapse
|