1
|
Ghosh R, Gupta S, Mehrotra S, Kumar A. Surface-Modified Diopside-Reinforced PCL Biopolymer Composites with Enhanced Interfacial Strength and Mechanical Properties for Orthopedic Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7670-7685. [PMID: 38310585 DOI: 10.1021/acsami.3c15637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
The phase separation of ceramics in a biopolymer matrix makes it challenging to achieve satisfactory mechanical properties required for orthopedic applications. It has been found that silane coupling agents can modify the surface of the bioceramic phase by forming a molecular bridge between the polymer and the ceramic, resulting in improved interfacial strength and adhesion. Therefore, in the present study, silane-modified diopside (DI) ceramic and ε-polycaprolactone (PCL) biopolymer composites were fabricated by injection molding method. The silane modification of DI resulted in their uniform dispersion in the PCL matrix, whereas agglomeration was found in composites containing unmodified DI. The thermal stability of the silane-modified DI-containing composites also increased. The Young's modulus of the composite containing 50% w/w DI modified by 3% w/w silane increased by 103% compared to composites containing 50% w/w unmodified DI. The biodegradation of the unmodified composites was significantly high, indicating their weak interfacial strength with the PCL matrix (p ≤ 0.001). The osteoconductive behavior of the composites was also validated by in vitro cell-material studies. Overall, our findings supported that the silane-modified composites have improved surface roughness, mechanical, and osteoconductive properties compared to the unmodified composite and have the potential for orthopedic applications.
Collapse
Affiliation(s)
- Rupita Ghosh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Sneha Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Shreya Mehrotra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Centre of Excellence for Orthopedics and Prosthetics, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| |
Collapse
|
2
|
Poli E, Magnaudeix A, Damia C, Lalloué F, Chaleix V, Champion E, Sol V. Advanced protocol to functionalize CaP bioceramic surface with peptide sequences and effect on murine pre-osteoblast cells proliferation. Bioorg Med Chem Lett 2019; 29:1069-1073. [PMID: 30852082 DOI: 10.1016/j.bmcl.2019.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/27/2019] [Accepted: 03/03/2019] [Indexed: 11/25/2022]
Abstract
To bring osteoinductive properties to calcium phosphate (CaP) bioceramics, a silicon-substituted hydroxyapatite was functionalized by integrin-adhesive cyclic-pentapeptides (c-(DfKRG)). A new two-step protocol was set up to immobilize peptides at low and controlled density on the ceramic surface and limit contamination by adsorbed molecules. To this aim, a spacer bearing c-(DfKRG)-S-PEG6-NHS molecule was synthesized and bonded to an organosilane previously covalently bonded to the ceramic surface. The functionalized ceramic was tested in vitro for MC3T3-E1 murine pre-osteoblasts. CaP ceramic surface retained good biological properties thanks to low density of bonded molecules preserving part of the bioactive CaP surface free of bioorganic molecules. The final SiHA-T-PEG6-S-c-(DfKRG) was shown to increase cell density and to improve proliferation. Furthermore, the use of a strong and stable covalent bond between inorganic and organic parts prevented early burst release of the peptide and increased the persistence of its bioactivity over time. So, this CaP ceramic associating c-(DfKRG) by covalent grafting could be considered as promising new biomaterials for bone tissue engineering.
Collapse
Affiliation(s)
- Evelyne Poli
- Université de Limoges, CNRS, IRCER UMR 7315, F-87000 Limoges, France
| | | | - Chantal Damia
- Université de Limoges, CNRS, IRCER UMR 7315, F-87000 Limoges, France.
| | - Fabrice Lalloué
- Université de Limoges, CAPTuR, EA3842, F-87000 Limoges, France
| | - Vincent Chaleix
- Université de Limoges, Laboratoire PEIRENE, EA 7500, F-87000 Limoges, France
| | - Eric Champion
- Université de Limoges, CNRS, IRCER UMR 7315, F-87000 Limoges, France
| | - Vincent Sol
- Université de Limoges, Laboratoire PEIRENE, EA 7500, F-87000 Limoges, France
| |
Collapse
|
3
|
Chen L, Childs RD, Landis WJ. Correlations between gene expression and mineralization in the avian leg tendon. Bone 2019; 121:42-59. [PMID: 30419319 DOI: 10.1016/j.bone.2018.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/02/2018] [Accepted: 11/07/2018] [Indexed: 10/27/2022]
Abstract
Certain avian tendons have been studied previously as a model system for normal mineralization of vertebrates in general. In this regard, the gastrocnemius tendon in the legs of turkeys mineralizes in a well defined temporal and spatial manner such that changes in the initial and subsequent events of mineral formation can be associated with time and specific locations in the tissue. In the present investigation, these parameters and mineral deposition have been correlated with the expression of several genes and the synthesis and secretion of their related extracellular matrix proteins by the composite tenocytes of the tendon. Quantitative polymerase chain reaction analysis demonstrates that mRNA expression of the non-collagenous genes of bone sialoprotein, osteopontin, and osteocalcin corresponds well with the temporal and spatial onset and progression of mineralization. Immunolocalization separately confirms the synthesis and secretion of these matrix molecules. The expression of other non-collagenous genes such as decorin does not show strong correlation with turkey leg tendon mineralization, and expression of vimentin, a cytoskeletal component which may be regulated by biomechanical factors in the tendon, may lead to inhibition of osteocalcin expression during the development and mineralization of the tissue. The overall results of this work provide insight into direct temporal and spatial relations between the genes and proteins of interest as well as the formation and deposition of mineral in the avian tendon model.
Collapse
Affiliation(s)
- Ling Chen
- Department of Polymer Science, University of Akron, Akron, OH, USA
| | | | - William J Landis
- Department of Polymer Science, University of Akron, Akron, OH, USA.
| |
Collapse
|
4
|
Li W, Sun L, Pan L, Lan Z, Jiang T, Yang X, Luo J, Li R, Tan L, Zhang S, Yu M. Dendrimer-like assemblies based on organoclays as multi-host system for sustained drug delivery. Eur J Pharm Biopharm 2014; 88:706-17. [PMID: 25308929 DOI: 10.1016/j.ejpb.2014.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 09/22/2014] [Accepted: 09/25/2014] [Indexed: 12/20/2022]
Abstract
Chemical modification of nanoclay will ensure further progress on these materials. In this work, we show that montmorillonite (MTM) nanosheets can be modified with β-cyclodextrin (CD) via a nucleophilic substitution reaction between mono-6-(p-toluenesulfonyl)-6-deoxy-β-CD and an amino group of 3-aminopropyltriethoxysilane (APTES)-functionalized MTM. The resulting MTM-APTES-CD can be further self-assembled into dendrimer-like assemblies, exhibit a well-dispersed property even in Dulbecco's phosphate-buffered saline and do not aggregate for a period of at least 20days. The structure, morphology and assembly mechanism are systematically studied by (29)Si MAS NMR, FT-IR, (1)H NMR, SEM, FE-TEM, DLS and AFM, and the change in assemblies during the drug release is monitored using FE-TEM images. MTT assays indicate that the assemblies only have low cytotoxicity, while CLSM and TEM observations reveal that the assemblies can easily penetrate cultured human endothelial cells. When clopidogrel is used as a guest molecule, the assemblies show not only much higher loading capacities compared to MTM and other containing β-CD assemblies or nanoparticles, but also a sustained release of clopidogrel up to 30days. This is attributed to the fact that the guest molecule is both supramolecularly complexed within the dendritic scaffold and intercalated into CD and MTM hosts. Host-guest systems between assemblies and various guests hold promising applications in drug delivery system and in the biomedical fields.
Collapse
Affiliation(s)
- Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, PR China; Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, PR China
| | - Lili Sun
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Lijun Pan
- Pharmaceutical Teaching Laboratory, Chongqing Medical University, Chongqing, PR China
| | - Zuopin Lan
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Tao Jiang
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Xiaolan Yang
- College of Laboratory Medicine, Chongqing Medical University, Chongqing, PR China
| | - Jianchun Luo
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Ronghua Li
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Liqing Tan
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Shurong Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Mingan Yu
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
5
|
Patel NG, Cavicchia JP, Zhang G, Zhang Newby BM. Rapid cell sheet detachment using spin-coated pNIPAAm films retained on surfaces by an aminopropyltriethoxysilane network. Acta Biomater 2012; 8:2559-67. [PMID: 22475785 DOI: 10.1016/j.actbio.2012.03.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 03/08/2012] [Accepted: 03/20/2012] [Indexed: 10/28/2022]
Abstract
The ability to harvest cell sheets grown on thermoresponsive polymers, such as poly(N-isopropylacrylamide) (pNIPAAm), has been widely studied for use in tissue engineering applications. pNIPAAm is of special interest because of the phase change that it undergoes in a physiologically relevant temperature range. Two primary approaches have been adopted to graft pNIPAAm chains covalently onto tissue culture polystyrene dishes: electron beam irradiation and plasma polymerization. These approaches often involve non-easily accessible (e.g. e-beam) facilities and complicated procedures that have hindered most tissue culture laboratories in adopting this technology for their specific applications. In this study, we developed a simple and cost-effective approach to create thermoresponsive surfaces using commercially available pNIPAAm. Using a simple spin-coating technique, thermoresponsive thin films were deposited on glass slides or silicon wafers using pNIPAAm blended with a small amount of 3-aminopropyltriethoxysilane (APTES), which enhances the retention of pNIPAAm on the surface. We found that the thermoresponsive films created using our method support cell attachment and proliferation without additional adhesive proteins as well as cell sheet detachment within minutes.
Collapse
|
6
|
Hynd MR, Turner JN, Shain W. Applications of hydrogels for neural cell engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 18:1223-44. [DOI: 10.1163/156856207782177909] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Matthew R. Hynd
- a Laboratory of Nervous System Disorders, Wadsworth Center, P.O. Box 509, Empire State Plaza, Albany, NY 12201-0509, USA
| | - James N. Turner
- b Laboratory of Nervous System Disorders, Wadsworth Center, P.O. Box 509, Empire State Plaza, Albany, NY 12201-0509, USA
| | - William Shain
- c Laboratory of Nervous System Disorders, Wadsworth Center, P.O. Box 509, Empire State Plaza, Albany, NY 12201-0509, USA
| |
Collapse
|
7
|
Shindo H, Park J, Taniguchi M. Effect of amino group density for prevention of mammary gland tissue detachment from coated glass surface. J Biosci Bioeng 2011; 112:180-3. [PMID: 21652262 DOI: 10.1016/j.jbiosc.2011.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 04/08/2011] [Accepted: 04/14/2011] [Indexed: 11/25/2022]
Abstract
Tissue detachment from histological glass slides coated with different amino group densities was investigated during heat treatment for immunohistochemical staining. In both sow and piglet mammary gland tissues, the results clearly showed strong adhesion and high retention on self-assembled monolayers with high amino group density.
Collapse
Affiliation(s)
- Hironori Shindo
- Graduate School of Human Life Sciences, Mimasaka University, 50 Kitazono-cho, Tsuyama-shi, Okayama 708-8511, Japan
| | | | | |
Collapse
|
8
|
Characterization of alcohol dehydrogenase from permeabilized brewer's yeast cells immobilized on the derived attapulgite nanofibers. Appl Biochem Biotechnol 2009; 160:2287-99. [PMID: 19578994 DOI: 10.1007/s12010-009-8692-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Accepted: 06/05/2009] [Indexed: 10/20/2022]
Abstract
Alcohol dehydrogenase (ADH) from permeabilized brewer's yeast was immobilized on derived attapulgite nanofibers via glutaraldehyde covalent binding. The effect of immobilization on ADH activity, optimum temperature and pH, thermal, pH and operational stability, reusability of immobilized ADH, and bioreduction of ethyl 3-oxobutyrate (EOB) to ethyl(S)-3-hydroxybutyrate ((S)-EHB) by the immobilized ADH were investigated. The results show the immobilized ADH retained higher activity over wider ranges of pH and temperature than those of the free. The optimum temperature and pH were 7.5 and 35 degrees C, respectively, and 58% of the original activity was retented after incubation at 35 degrees C for 32 h. More importantly, in bioreduction of EOB mediated by immobilized ADH, the conversion of substrate and enantiomeric excess (ee) of product reached 88% and 99.2%, respectively, within 2 h and retained about 42% of the initial activity after eight cycles.
Collapse
|
9
|
Pakstis LM, Dunkers JP, Zheng A, Vorburger TV, Quinn TP, Cicerone MT. Evaluation of polydimethylsiloxane modification methods for cell response. J Biomed Mater Res A 2009; 92:604-14. [PMID: 19235219 DOI: 10.1002/jbm.a.32402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Many methods exist in the literature to modify surfaces with extracellular matrix (ECM) proteins prior to cell seeding. However, there are few studies that systematically characterize and compare surface properties and cell response results among modification methods that use different bonding mechanisms. In this work, we compare cell response and physical characterization results from fibronectin or laminin attached to polydimethylsiloxane (PDMS) elastomer surfaces by physical adsorption, chemisorption, and covalent attachment to determine the best method to modify a deformable surface. We evaluate modification methods based on completeness and uniformity of coverage, surface roughness, and hydrophilicity of attached ECM protein. Smooth muscle cell adhesion, proliferation, morphology, and phenotype were also evaluated. We found that chemisorption methods resulted in higher amounts of protein attachment than physical adsorption and covalent bonding of the ECM proteins. Cell response to protein-modified surfaces was similar with respect to cell adhesion, area, aspect ratio, and phenotype. When all the data are considered, the chemisorption methods, most notably silane_70, provide the best surface properties and highest cell proliferation.
Collapse
Affiliation(s)
- L M Pakstis
- Polymers Division, Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | | | | | | | | | | |
Collapse
|
10
|
D'Britto V, Tiwari S, Purohit V, Wadgaonkar PP, Bhoraskar SV, Bhonde RR, Prasad BLV. Composites of plasma treated poly(etherimide) films with gold nanoparticles and lysine through layer by layer assembly: a “friendly-rough” surface for cell adhesion and proliferation for tissue engineering applications. ACTA ACUST UNITED AC 2009. [DOI: 10.1039/b817231e] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Bussy C, Verhoef R, Haeger A, Morra M, Duval J, Vigneron P, Bensoussan A, Velzenberger E, Cascardo G, Cassinelli C, Schols H, Knox JP, Nagel M. Modulatingin vitrobone cell and macrophage behavior by immobilized enzymatically tailored pectins. J Biomed Mater Res A 2008; 86:597-606. [DOI: 10.1002/jbm.a.31729] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|