1
|
Tu Y, Yang Y, Li Y, He C. Naturally occurring coumestans from plants, their biological activities and therapeutic effects on human diseases. Pharmacol Res 2021; 169:105615. [PMID: 33872808 DOI: 10.1016/j.phrs.2021.105615] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/24/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Naturally occurring coumestans are known as a collection of plant-derived polycyclic aromatic secondary metabolites which are characterized by the presence of an oxygen heterocyclic four-ring system comprising a coumarin moiety and a benzofuran moiety sharing a C˭C bond. Recently, there is an increasing attention in excavating the medicinal potential of coumestans, particularly coumestrol, wedelolactone, psoralidin and glycyrol, in a variety of diseases. This review is a comprehensive inventory of the chemical structures of coumestans isolated from various plant sources during the period of 1956-2020, together with their reported biological activities. 120 molecules were collected and further classified as coumestans containing core skeleton, dimethylpyranocoumestans, furanocoumestans, O-glycosylated coumestans and others, which showed a wide range of pharmacological activities including estrogenic, anti-cancer, anti-inflammatory, anti-osteoporotic, organ protective, neuroprotective, anti-diabetic and anti-obesity, antimicrobial, immunosuppressive, antioxidant and skin-protective activities. Furthermore, this review focuses on the counteraction of coumestans against bone diseases and organ damages, and the involved molecular mechanisms, which could provide important information to better understand the medicinal values of these compounds. This review is intended to be instructive for the rational design and development of less toxic and more effective drugs with a coumestan scaffold.
Collapse
Affiliation(s)
- Yanbei Tu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Ying Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Yanfang Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China.
| |
Collapse
|
2
|
Fotopoulos I, Hadjipavlou-Litina D. Hybrids of Coumarin Derivatives as Potent and Multifunctional Bioactive Agents: A Review. Med Chem 2020; 16:272-306. [PMID: 31038071 DOI: 10.2174/1573406415666190416121448] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/22/2019] [Accepted: 04/09/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Coumarins exhibit a plethora of biological activities, e.g. antiinflammatory and anti-tumor. Molecular hybridization technique has been implemented in the design of novel coumarin hybrids with several bioactive groups in order to obtain molecules with better pharmacological activity and improved pharmacokinetic profile. OBJECTIVE Therefore, we tried to gather as many as possible biologically active coumarin hybrids referred in the literature till now, to delineate the structural characteristics in relation to the activities and to have a survey that might help the medicinal chemists to design new coumarin hybrids with drug-likeness and varied bioactivities. RESULTS The biological activities of the hybrids in most of the cases were found to be different from the biological activities presented by the parent coumarins. The results showed that the hybrid molecules are more potent compared to the standard drugs used in the evaluation experiments. CONCLUSION Conjugation of coumarin with varied pharmacophore groups/druglike molecules responsible for different biological activities led to many novel hybrid molecules, with a multitarget behavior and improved pharmacokinetic properties.
Collapse
Affiliation(s)
- Ioannis Fotopoulos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Dimitra Hadjipavlou-Litina
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
3
|
Tripathi AK, Rai D, Kothari P, Kushwaha P, Sinha S, Sardar A, Sashidhara KV, Trivedi R. Benzofuran pyran compound rescues rat and human osteoblast from lipotoxic effect of palmitate by inhibiting lipid biosynthesis and promoting stabilization of RUNX2. Toxicol In Vitro 2020; 66:104872. [DOI: 10.1016/j.tiv.2020.104872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/06/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
|
4
|
Evaluation of Isoflavones as Bone Resorption Inhibitors upon Interactions with Receptor Activator of Nuclear Factor-κB Ligand (RANKL). Molecules 2020; 25:molecules25010206. [PMID: 31947859 PMCID: PMC6982798 DOI: 10.3390/molecules25010206] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 12/31/2022] Open
Abstract
Receptor activator of nuclear factor-κB ligand (RANKL) is a cytokine responsible for bone resorption. It binds its receptor RANK, which activates osteoporosis. High levels of osteoprotegerin (OPG) competitively binding RANKL limit formation of ligand-receptor complexes and enable bone mass maintenance. The new approach to prevent osteoporosis is searching for therapeutics that can bind RANKL and support OPG function. The aim of the study was to verify the hypothesis that isoflavones can form complexes with RANKL limiting binding of the cytokine to its receptor. Interactions of five isoflavones with RANKL were investigated by isothermal titration calorimetry (ITC), by in silico docking simulation and on Saos-2 cells. Daidzein and biochanin A showed the highest affinity for RANKL. Among studied isoflavones coumestrol, formononetin and biochanin A showed the highest potential for Saos-2 mineralization and were able to regulate the expression of RANKL and OPG at the mRNA levels, as well as osteogenic differentiation markers: alkaline phosphatase (ALP), collagen type 1, and Runt-related transcription factor 2 (Runx2). Comparison of the osteogenic activities of isoflavones showed that the use of physicochemical techniques such as ITC or in silico docking are good tools for the initial selection of substances showing a specific bioactivity.
Collapse
|
5
|
Kushwaha P, Tripathi AK, Gupta S, Kothari P, Upadhyay A, Ahmad N, Sharma T, Siddiqi MI, Trivedi R, Sashidhara KV. Synthesis and study of benzofuran-pyran analogs as BMP-2 targeted osteogenic agents. Eur J Med Chem 2018; 156:103-117. [PMID: 30006156 DOI: 10.1016/j.ejmech.2018.06.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/11/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022]
Abstract
Twenty-four novel benzofuran-pyran derivatives were synthesized and evaluated for their anti-osteoporotic activity in primary cultures of rat calvarial osteoblasts in vitro. Among all the compounds screened for the alkaline phosphatase activity, three compounds 4e, 4j and 4k showed potent activity at picomolar concentrations in osteoblast differentiating stimulation. Additionally, these compounds were found effective in mineralization, assessed by alizarin red-S staining assay. Compounds were again validated through a series of other in vitro experiments. Moreover, molecular dynamics simulations demonstrated that both benzofuran and pyran moieties are requisite to fit into the active site of BMP-2 receptor, a key target of the osteogenic agents. The obtained results strongly convey that compound 4e is a potential bone anabolic agent among synthesized series, which can be further explored as a drug lead for treating osteoporosis.
Collapse
Affiliation(s)
- Pragati Kushwaha
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Ashish Kumar Tripathi
- Division of Endocrinology, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Sampa Gupta
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Priyanka Kothari
- Division of Endocrinology, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Akanksha Upadhyay
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Naseer Ahmad
- Division of Endocrinology, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Tanuj Sharma
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - M I Siddiqi
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Ritu Trivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.
| | - Koneni V Sashidhara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.
| |
Collapse
|
6
|
Sashidhara KV, Singh LR, Choudhary D, Arun A, Gupta S, Adhikary S, Palnati GR, Konwar R, Trivedi R. Design, synthesis and in vitro evaluation of coumarin–imidazo[1,2-a]pyridine derivatives against cancer induced osteoporosis. RSC Adv 2016. [DOI: 10.1039/c6ra15674f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The potential of coumarin–imidazo[1,2-a]pyridine hybrids to prevent bone loss in patients with bone metastases is discussed.
Collapse
Affiliation(s)
- Koneni V. Sashidhara
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - L. Ravithej Singh
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | | | - Ashutosh Arun
- Endocrinology Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Sampa Gupta
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Sulekha Adhikary
- Endocrinology Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Gopala Reddy Palnati
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Rituraj Konwar
- Endocrinology Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Ritu Trivedi
- Endocrinology Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| |
Collapse
|
7
|
Sashidhara KV, Modukuri RK, Choudhary D, Bhaskara Rao K, Kumar M, Khedgikar V, Trivedi R. Synthesis and evaluation of new coumarin–pyridine hybrids with promising anti-osteoporotic activities. Eur J Med Chem 2013; 70:802-10. [DOI: 10.1016/j.ejmech.2013.10.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 10/22/2013] [Accepted: 10/24/2013] [Indexed: 01/28/2023]
|
8
|
|
9
|
Effects of pomegranate extracts on cartilage, bone and mesenchymal cells of mouse fetuses. Br J Nutr 2011; 107:683-90. [PMID: 21781378 DOI: 10.1017/s0007114511003394] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Pomegranate is a rich source of polyphenols, which are believed to be responsible for the oestrogenic activities of extracts of this fruit in mice. One of these potential activities is the prevention of bone loss. The objectives of the present study were to determine the effects of pomegranate extract on chondrogenesis and osteogenesis in mouse embryos in vivo and limb bud cultures in vitro. A total of fifty pregnant Balb/c mice were given vehicle, pomegranate juice extract (PJE), pomegranate husk extract (PHE) or a mixture of husk and juice extract (PME). Their embryos were stained with alizarin red S and alcian blue, and the length of the femur, tibia and their ossification zones were measured on day 19 of gestation. Bone Ca content in pregnant mice was also measured. Mice treated with PJE showed an increase in bone Ca content. Dietary supplementation with all extracts significantly increased embryo femur length and osteogenesis index. Mesenchymal cells from fetal limb buds were cultured and exposed to 10, 100, 1000 and 10 000 μg/ml of PJE, PHE or PME. The number of viable cells was greater in cultures exposed to the extracts than in control cultures. The number of cartilage nodules and their diameters were greater in extract-treated cell cultures, a finding which reflected increased cell proliferation and differentiation rates. In conclusion, the findings of the present study suggest that pomegranate is able to enhance bone formation.
Collapse
|
10
|
Hsieh TP, Sheu SY, Sun JS, Chen MH, Liu MH. Icariin isolated from Epimedium pubescens regulates osteoblasts anabolism through BMP-2, SMAD4, and Cbfa1 expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010; 17:414-23. [PMID: 19747809 DOI: 10.1016/j.phymed.2009.08.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2008] [Revised: 07/02/2009] [Accepted: 08/06/2009] [Indexed: 05/23/2023]
Abstract
Epimedii herba is one of the most frequently used herbs in formulas prescribed for the treatment of osteoporosis in China. The main active flavonoid glucoside extracted from Epimedium pubescens is Icariin, which has been reported to enhance bone healing and reduce osteoporosis occurrence. However, the detailed molecular mechanisms remain unclear. In this present study, we examine the molecular mechanisms of icariin by using primary osteoblast cell cultures obtained from adult mice. The osteoblast cells were harvested from 8-month old female Imprinting Control Region (ICR) mice. The effects of icariin stimulation on the proliferation, differentiation and maturation of osteoblasts were examined. The production of nitric oxide (NO) and caspase-3 were analyzed, along with the gene expressions of bone morphogenetic protein-2 (BMP-2), SMAD4, Cbfa1/Runx2, OPG, and RANKL. The viability of the osteoblasts reached its maximum at 10(-8)M icariin. At this concentration, icariin increased the proliferation and matrix mineralization of osteoblasts and promoted NO synthesis. With icariin treatment, the BMP-2, SMAD4, Cbfa1/Runx2, and OPG gene expressions were up-regulated; the RANKL gene expression was however down-regulated. Concurrent treatment involving the BMP antagonist (Noggin) or the NOS inhibitor (L-NAME) diminished the icariin-induced cell proliferation, ALP activity, NO production, as well as the BMP-2, SMAD4, Cbfa1/Runx2, OPG, RANKL gene expressions. In this study, we demonstrate that in vitro icariin is a bone anabolic agent that may exert its osteogenic effects through the induction of BMP-2 and NO synthesis, subsequently regulating Cbfa1/Runx2, OPG, and RANKL gene expressions. This effect may contribute to its action on the induction of osteoblasts proliferation and differentiation, resulting in bone formation.
Collapse
Affiliation(s)
- Tsai-Pei Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, No. 250, Wu-Shin Street, Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
11
|
Wu XT, Wang B, Wei JN. Coumestrol promotes proliferation and osteoblastic differentiation in rat bone marrow stromal cells. J Biomed Mater Res B Appl Biomater 2009; 90:621-8. [PMID: 19165772 DOI: 10.1002/jbm.b.31326] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Although the effects of coumestrol on osteoblasts and osteoclasts can be summarized as increasing the bone density and preventing bone resorption, direct and detailed effects of coumestrol on bone marrow stromal cells remain obscure. In the present study, the effects of coumestrol on proliferation and osteoblastic differentiation of rat bone marrow stromal cells (BMSCs) have been investigated; the regulative effect of coumestrol on BMSCs and skeletal system has also been discussed. The results showed that treatment with coumestrol increased cellular activities (analyzed by MTT assay), alkaline phosphatase (ALP), type I collagen and osteocalcin (OCN) activity as well as the protein and gene expression of OPG, gene expression ratio of OPG/RANKL and gene expression of estrogen receptor alpha(ERalpha). These results demonstrate that phytoestrogen coumestrol has a direct enhancing effect on the proliferation and osteogenic differentiation of bone marrow stromal cells, which would lead to stimulation of bone formation, and it can also protect the whole skeletal system by regulating OPG/RANKL expression, and these effects may be mediated by ERalpha.
Collapse
Affiliation(s)
- Xiao-tao Wu
- Department of Orthopaedics, The Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | | | | |
Collapse
|