Dini C, Nagay BE, Magno MB, Maia LC, Barão VAR. Photofunctionalization as a suitable approach to improve the osseointegration of implants in animal models-A systematic review and meta-analysis.
Clin Oral Implants Res 2020;
31:785-802. [PMID:
32564392 DOI:
10.1111/clr.13627]
[Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/27/2023]
Abstract
OBJECTIVES
To determine whether photofunctionalization influences dental implant osseointegration.
MATERIAL AND METHODS
Data on osseointegration rates were extracted from 8 databases, based on bone-to-implant contact (BIC) and pushout tests. Internal validity was accessed through the SYRCLE risk of bias tool for animal experimental studies. Meta-analyses were performed for investigation of the influence of photofunctionalization on implant osseointegration, with a random effect and a confidence interval of 95%. The certainty of evidence was accessed through the GRADE approach.
RESULTS
Thirty-four records were identified, and 10 were included in the meta-analysis. Photofunctionalized implants showed higher mean values for BIC in rabbits (MD 6.92 [1.01, 12.82], p = .02), dogs (MD 23.70 [10.23, 37.16], p = .001), rats (MD 20.93 [12.91, 28.95], p < .0001), and in the pooled BIC analyses (MD 14.23 [7.80, 20.66], p < .0001) compared to those in control implants in the overall assay. Conversely, at late healing periods, the pooled BIC meta-analyses showed no statistically significant differences (p > .05) for photofunctionalized and control implants at 12 weeks of follow-up. For pushout analysis, photofunctionalized implants presented greater bone strength integration (MD 19.92 [13.88, 25.96], p < .0001) compared to that of control implants. The heterogeneity between studies ranged from "not important" to "moderate" for rabbits I2 = 24%, dogs I2 = 0%, rats I2 = 0%, and pooled BIC (I2 = 49%), while considerable heterogeneity was observed for pushouts (I2 = 90%).
CONCLUSION
Photofunctionalization improves osseointegration in the initial healing period of implants, as summarized from available data from rabbit, dog, and rat in vivo models.
Collapse