1
|
V B, Femina T A, Iyengar D, K A, Ravi M. Approaches for Head and Neck Cancer Research - Current Status and the Way Forward. Cancer Invest 2021; 40:151-172. [PMID: 34806936 DOI: 10.1080/07357907.2021.2009850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Head and neck cancers (HNCs) are seeing an increasing trend in their prevalence among both genders and are the seventh most common cancer type occurring at the global level. Studies addressing both the cancer cell physiology and individual differences in response to a specific treatment modality should be understood for arriving at effective treatment and management of the HNCs. In this article, we discuss the trends in HNC research and their various approaches starting from 2D in vitro models, which are the traditional experimental materials to recently established Cancer-Tissue Originated Spheroids (CTOS) distinctly contributing towards personalized or precision medicine.
Collapse
Affiliation(s)
- Barghavi V
- Department of Human Genetics, Faculty of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Arokia Femina T
- Department of Human Genetics, Faculty of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - DivyaSowrirajan Iyengar
- Department of Human Genetics, Faculty of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Archana K
- Department of Human Genetics, Faculty of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Maddaly Ravi
- Department of Human Genetics, Faculty of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
2
|
Lu EMC, Hobbs C, Ghuman M, Hughes FJ. Development of an in vitro model of the dentogingival junction using 3D organotypic constructs. J Periodontal Res 2020; 56:147-153. [PMID: 33010184 DOI: 10.1111/jre.12804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The overall aim was to propose a plausible model of the dentogingival junction (DGJ) to deepen our understanding of the extrinsic influences responsible for the development of the junctional epithelial phenotype. The specific objective was to test the hypothesis that epithelial migration and proliferation would be inhibited by periodontal ligament (PDL) fibroblasts in an in vitro model of the DGJ consisting of 3D organotypic cultures. BACKGROUND Previously, we showed that 3D organotypic cultures containing human gingival fibroblasts (HGF) supported the development of a multi-layered epithelium, while constructs containing human periodontal ligament fibroblasts (HPDLF) resulted in epithelial atrophy (Lu EMC, Hobbs C, Dyer CJ, Ghuman M, Hughes FJ. J Perio Res., 2020). However, changes in epithelial phenotype have not been studied within an in vitro model of the DGJ. METHODS The in vitro model of the DGJ comprised of a donor HGF construct (H400 epithelium overlying HGF-collagen matrix) supported by a dimensionally larger recipient collagen bed enriched with HPDLF. Samples were harvested, fixed and processed for immunohistochemistry. The changes in epithelial migration and proliferation following contact with HPDLF were assessed by measuring the horizontal extension of the epithelial outgrowth on the recipient collagen matrix. RESULTS Within our in vitro model of the DGJ, epithelial migration and proliferation were inhibited following contact with the recipient HPDLF. By contrast, the control set-up showed a relative increase in epithelial growth, where the epithelium came into contact with the recipient HGF. Overall, there were limited changes in the molecular expression of keratin markers. CONCLUSION This study has proposed a plausible in vitro model of the DGJ to illustrate the role of different fibroblasts in the regulation of dentogingival epithelia. Furthermore, it suggests that the anatomical positional stability of the JE and its apparent resistance to apical migration could be associated with its interaction with the PDL.
Collapse
Affiliation(s)
- Emily Ming-Chieh Lu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, Guy's Hospital, London, UK
| | - Carl Hobbs
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Mandeep Ghuman
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, Guy's Hospital, London, UK
| | - Francis J Hughes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, Guy's Hospital, London, UK
| |
Collapse
|
3
|
Lu EMC, Hobbs C, Dyer C, Ghuman M, Hughes FJ. Differential regulation of epithelial growth by gingival and periodontal fibroblasts in vitro. J Periodontal Res 2020; 55:859-867. [PMID: 32885443 DOI: 10.1111/jre.12778] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/23/2020] [Accepted: 05/13/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To investigate the underlying molecular mechanisms by which gingival and periodontal ligament (PDL) fibroblasts regulate epithelial phenotype. BACKGROUND Fibroblast populations regulate the epithelial phenotype through epithelial-mesenchymal interactions (EMI). Previous studies have proposed that maintenance of the junctional epithelium (JE) is dependent on the differential effects from gingival and PDL tissues. However, these cell populations are undefined and the signalling mechanisms which may regulate JE are unknown. METHODS Immunohistochemical analyses were performed on formalin-fixed paraffin-embedded sections of dentogingival tissues to identify phenotypic differences in fibroblast populations. The effect of distinct fibroblasts on epithelial phenotype was studied via 3D organotypic cultures, consisting of an H400 epithelium supported by human gingival fibroblasts (HGF) or human periodontal ligament fibroblasts (HPDLF), embedded in collagen gel. To investigate the involvement of Wnt signalling in EMI, the Wnt antagonist rhDKK1 was added to HGF constructs. The gene expression of Wnt antagonists and agonists was tested via RNA extraction and qPCR. Specific gene silencing using RNA interference was performed on HPDLF/HGF constructs. RESULTS Gingival fibroblasts were characterized by Sca1 expression, and PDL fibroblasts, characterized by Periostin and Asporin expression. Through the construction of 3D organotypic cultures, we showed that HGF supported epithelial multilayering, whilst HPDLF failed to support epithelial cell growth. Furthermore, HGF constructs treated with rhDKK1 resulted in a profound reduction in epithelial thickness. We identified SFRP4 to be highly specifically expressed in HPDLF, at both the mRNA and protein levels. A knockdown of SFRP4 in HPDLF constructs led to an increase in epithelial growth. CONCLUSION The study demonstrates the presence of phenotypically distinct fibroblast populations within dentogingival tissues and that these specific populations have different influences on the epithelium. Our data suggest that a downregulation of Wnt signalling within PDL may be important in maintaining the integrity and anatomical position of the JE.
Collapse
Affiliation(s)
- Emily Ming-Chieh Lu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, Guy's Hospital, London, UK
| | - Carl Hobbs
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Wing, London, UK
| | - Carlene Dyer
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, Guy's Hospital, London, UK
| | - Mandeep Ghuman
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, Guy's Hospital, London, UK
| | - Francis J Hughes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, Guy's Hospital, London, UK
| |
Collapse
|
4
|
Bierbaumer L, Schwarze UY, Gruber R, Neuhaus W. Cell culture models of oral mucosal barriers: A review with a focus on applications, culture conditions and barrier properties. Tissue Barriers 2018; 6:1479568. [PMID: 30252599 PMCID: PMC6389128 DOI: 10.1080/21688370.2018.1479568] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Understanding the function of oral mucosal epithelial barriers is essential for a plethora of research fields such as tumor biology, inflammation and infection diseases, microbiomics, pharmacology, drug delivery, dental and biomarker research. The barrier properties are comprised by a physical, a transport and a metabolic barrier, and all these barrier components play pivotal roles in the communication between saliva and blood. The sum of all epithelia of the oral cavity and salivary glands is defined as the blood-saliva barrier. The functionality of the barrier is regulated by its microenvironment and often altered during diseases. A huge array of cell culture models have been developed to mimic specific parts of the blood-saliva barrier, but no ultimate standard in vitro models have been established. This review provides a comprehensive overview about developed in vitro models of oral mucosal barriers, their applications, various cultivation protocols and corresponding barrier properties.
Collapse
Affiliation(s)
- Lisa Bierbaumer
- a Competence Unit Molecular Diagnostics, Center Health and Bioresources, Austrian Institute of Technology (AIT) GmbH , Vienna , Austria
| | - Uwe Yacine Schwarze
- b Department of Oral Biology , School of Dentistry, Medical University of Vienna , Vienna , Austria.,c Austrian Cluster for Tissue Regeneration , Vienna , Austria
| | - Reinhard Gruber
- b Department of Oral Biology , School of Dentistry, Medical University of Vienna , Vienna , Austria.,c Austrian Cluster for Tissue Regeneration , Vienna , Austria.,d Department of Periodontology , School of Dental Medicine, University of Bern , Bern , Switzerland
| | - Winfried Neuhaus
- a Competence Unit Molecular Diagnostics, Center Health and Bioresources, Austrian Institute of Technology (AIT) GmbH , Vienna , Austria
| |
Collapse
|
5
|
Suliman S, Mustafa K, Krueger A, Steinmüller-Nethl D, Finne-Wistrand A, Osdal T, Hamza AO, Sun Y, Parajuli H, Waag T, Nickel J, Johannessen AC, McCormack E, Costea DE. Nanodiamond modified copolymer scaffolds affects tumour progression of early neoplastic oral keratinocytes. Biomaterials 2016; 95:11-21. [PMID: 27108402 DOI: 10.1016/j.biomaterials.2016.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/03/2016] [Indexed: 11/27/2022]
Abstract
This study aimed to evaluate the tumorigenic potential of functionalising poly(LLA-co-CL) scaffolds. The copolymer scaffolds were functionalised with nanodiamonds (nDP) or with nDP and physisorbed BMP-2 (nDP-PHY) to enhance osteoinductivity. Culturing early neoplastic dysplastic keratinocytes (DOK(Luc)) on nDP modified scaffolds reduced significantly their subsequent sphere formation ability and decreased significantly the cells' proliferation in the supra-basal layers of in vitro 3D oral neoplastic mucosa (3D-OT) when compared to DOK(Luc) previously cultured on nDP-PHY scaffolds. Using an in vivo non-invasive environmentally-induced oral carcinogenesis model, nDP scaffolds were observed to reduce bioluminescence intensity of tumours formed by DOK(Luc) + carcinoma associated fibroblasts (CAF). nDP modification was also found to promote differentiation of DOK(Luc) both in vitro in 3D-OT and in vivo in xenografts formed by DOK(Luc) alone. The nDP-PHY scaffold had the highest number of invasive tumours formed by DOK(Luc) + CAF outside the scaffold area compared to the nDP and control scaffolds. In conclusion, in vitro and in vivo results presented here demonstrate that nDP modified copolymer scaffolds are able to decrease the tumorigenic potential of DOK(Luc), while confirming concerns for the therapeutic use of BMP-2 for reconstruction of bone defects in oral cancer patients due to its tumour promoting capabilities.
Collapse
Affiliation(s)
- Salwa Suliman
- Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen, Norway; Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway; Center for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.
| | - Kamal Mustafa
- Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen, Norway
| | - Anke Krueger
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany
| | | | - Anna Finne-Wistrand
- Department of Fibre and Polymer Technology, KTH, Royal Institute of Technology, Stockholm, Sweden
| | - Tereza Osdal
- Department of Clinical Science, Hematology Section, University of Bergen, Bergen, Norway
| | - Amani O Hamza
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Yang Sun
- Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen, Norway; Department of Fibre and Polymer Technology, KTH, Royal Institute of Technology, Stockholm, Sweden
| | - Himalaya Parajuli
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway; Center for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Thilo Waag
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany
| | - Joachim Nickel
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Germany; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Translational Center 'Regenerative Therapies for Oncology and Musculoskeletal Diseases'- Würzburg Branch, Germany
| | - Anne Christine Johannessen
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Pathology, Haukeland University Hospital, Bergen, Norway; Centre for Cancer Biomarkers, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Emmet McCormack
- Department of Clinical Science, Hematology Section, University of Bergen, Bergen, Norway; Department of Medicine, Haematology Section, Haukeland University Hospital, Bergen, Norway
| | - Daniela Elena Costea
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway; Center for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway; Department of Pathology, Haukeland University Hospital, Bergen, Norway; Centre for Cancer Biomarkers, Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|