1
|
Kachanov A, Kostyusheva A, Brezgin S, Karandashov I, Ponomareva N, Tikhonov A, Lukashev A, Pokrovsky V, Zamyatnin AA, Parodi A, Chulanov V, Kostyushev D. The menace of severe adverse events and deaths associated with viral gene therapy and its potential solution. Med Res Rev 2024; 44:2112-2193. [PMID: 38549260 DOI: 10.1002/med.22036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 08/09/2024]
Abstract
Over the past decade, in vivo gene replacement therapy has significantly advanced, resulting in market approval of numerous therapeutics predominantly relying on adeno-associated viral vectors (AAV). While viral vectors have undeniably addressed several critical healthcare challenges, their clinical application has unveiled a range of limitations and safety concerns. This review highlights the emerging challenges in the field of gene therapy. At first, we discuss both the role of biological barriers in viral gene therapy with a focus on AAVs, and review current landscape of in vivo human gene therapy. We delineate advantages and disadvantages of AAVs as gene delivery vehicles, mostly from the safety perspective (hepatotoxicity, cardiotoxicity, neurotoxicity, inflammatory responses etc.), and outline the mechanisms of adverse events in response to AAV. Contribution of every aspect of AAV vectors (genomic structure, capsid proteins) and host responses to injected AAV is considered and substantiated by basic, translational and clinical studies. The updated evaluation of recent AAV clinical trials and current medical experience clearly shows the risks of AAVs that sometimes overshadow the hopes for curing a hereditary disease. At last, a set of established and new molecular and nanotechnology tools and approaches are provided as potential solutions for mitigating or eliminating side effects. The increasing number of severe adverse reactions and, sadly deaths, demands decisive actions to resolve the issue of immune responses and extremely high doses of viral vectors used for gene therapy. In response to these challenges, various strategies are under development, including approaches aimed at augmenting characteristics of viral vectors and others focused on creating secure and efficacious non-viral vectors. This comprehensive review offers an overarching perspective on the present state of gene therapy utilizing both viral and non-viral vectors.
Collapse
Affiliation(s)
- Artyom Kachanov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Anastasiya Kostyusheva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Sergey Brezgin
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Ivan Karandashov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Natalia Ponomareva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Andrey Tikhonov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Alexander Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Vadim Pokrovsky
- Laboratory of Biochemical Fundamentals of Pharmacology and Cancer Models, Blokhin Cancer Research Center, Moscow, Russia
- Department of Biochemistry, People's Friendship University, Russia (RUDN University), Moscow, Russia
| | - Andrey A Zamyatnin
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Belozersky Research, Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alessandro Parodi
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Vladimir Chulanov
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Infectious Diseases, Sechenov University, Moscow, Russia
| | - Dmitry Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
2
|
Gopinath SCB, Ismail ZH, Shapiai MI, Sobran NMM. Biosensing human blood clotting factor by dual probes: Evaluation by deep long short-term memory networks in time series forecasting. Biotechnol Appl Biochem 2022; 69:930-938. [PMID: 33835514 DOI: 10.1002/bab.2164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/06/2021] [Indexed: 11/06/2022]
Abstract
Artificial intelligence of things (AIoT) has become a potential tool for use in a wide range of fields, and its use is expanding in interdisciplinary sciences. On the other hand, in a clinical scenario, human blood-clotting disease (Royal disease) detection has been considered an urgent issue that has to be solved. This study uses AIoT with deep long short-term memory networks for biosensing application and analyzes the potent clinical target, human blood clotting factor IX, by its aptamer/antibody as the probe on the microscaled fingers and gaps of the interdigitated electrode. The earlier results by the current-volt measurements have shown the changes in the surface modification. The limit of detection (LOD) was noticed as 1 pM with the antibody as the probe, whereas the aptamer behaved better with the LOD at 100 fM. The time-series predictions from the AIoT application supported the obtained results with the laboratory analyses using both probes. This application clearly supports the results obtained from the interdigitated electrode sensor as aptamer to be the better option for analyzing the blood clotting defects. The current study supports a great implementation of AIoT in sensing application and can be followed for other clinical biomarkers.
Collapse
Affiliation(s)
- Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Zool Hilmi Ismail
- Centre for Artificial Intelligence and Robotics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, Malaysia
| | - Mohd Ibrahim Shapiai
- Centre for Artificial Intelligence and Robotics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, Malaysia
| | - Nur Maisarah Mohd Sobran
- Centre for Artificial Intelligence and Robotics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Achawi S, Pourchez J, Feneon B, Forest V. Graphene-Based Materials In Vitro Toxicity and Their Structure-Activity Relationships: A Systematic Literature Review. Chem Res Toxicol 2021; 34:2003-2018. [PMID: 34424669 DOI: 10.1021/acs.chemrestox.1c00243] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The unique properties of graphene-based materials (GBMs) placed them among the most exciting nanomaterials of the past decade. Scientists and industry are looking forward to working with not only efficient but also safe, sustainable GBMs. Designing a safer-by-design GBM implies to acquire the knowledge of which physicochemical characteristics (PCCs) can increase toxicity. In this systematic review, we extracted data from the literature to provide the available information about the structure-activity relationship of GBMs. 93 papers studying a total of 185 GBMs are included. Graphene oxides (GOs) and few-layer graphenes (FLGs) are the most studied GBMs. While reduced graphene oxides were often classified as poorly oxidant and weakly cytotoxic, graphene quantum dots were mostly moderately or highly cytotoxic. FLGs demonstrated relationships between median size and oxidative stress, between lateral size and both cytotoxicity and oxidative stress, and between thickness and cytotoxicity. We also underline relationships between median size, lateral size, and thickness of GOs and oxidative stress. However, it appears difficult to highlight clear structure-activity relationships for most PCCs and biological end points because despite a large amount of available data, the GBMs are often too poorly characterized in terms of PCCs descriptors and the biological end points investigation is not standardized enough. There is an urgent need for a better standardization of the experimental investigation of both PCCs and biological end points to allow research teams to play a part in the collaborative work toward the construction of a safer-by-design GBM through a better understanding of their key toxicity drivers.
Collapse
Affiliation(s)
- Salma Achawi
- Manufacture Française des Pneumatiques Michelin, Place des Carmes Déchaux, 63040 Clermont-Ferrand, Cedex 9, France.,Mines Saint-Etienne, Université Lyon, Université Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France
| | - Jérémie Pourchez
- Mines Saint-Etienne, Université Lyon, Université Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France
| | - Bruno Feneon
- Manufacture Française des Pneumatiques Michelin, Place des Carmes Déchaux, 63040 Clermont-Ferrand, Cedex 9, France
| | - Valérie Forest
- Mines Saint-Etienne, Université Lyon, Université Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France
| |
Collapse
|
4
|
Clarke GA, Hartse BX, Niaraki Asli AE, Taghavimehr M, Hashemi N, Abbasi Shirsavar M, Montazami R, Alimoradi N, Nasirian V, Ouedraogo LJ, Hashemi NN. Advancement of Sensor Integrated Organ-on-Chip Devices. SENSORS (BASEL, SWITZERLAND) 2021; 21:1367. [PMID: 33671996 PMCID: PMC7922590 DOI: 10.3390/s21041367] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023]
Abstract
Organ-on-chip devices have provided the pharmaceutical and tissue engineering worlds much hope since they arrived and began to grow in sophistication. However, limitations for their applicability were soon realized as they lacked real-time monitoring and sensing capabilities. The users of these devices relied solely on endpoint analysis for the results of their tests, which created a chasm in the understanding of life between the lab the natural world. However, this gap is being bridged with sensors that are integrated into organ-on-chip devices. This review goes in-depth on different sensing methods, giving examples for various research on mechanical, electrical resistance, and bead-based sensors, and the prospects of each. Furthermore, the review covers works conducted that use specific sensors for oxygen, and various metabolites to characterize cellular behavior and response in real-time. Together, the outline of these works gives a thorough analysis of the design methodology and sophistication of the current sensor integrated organ-on-chips.
Collapse
Affiliation(s)
- Gabriel A. Clarke
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; (G.A.C.); (B.X.H.); (A.E.N.A.); (M.T.); (M.A.S.); (R.M.); (N.A.); (V.N.); (L.J.O.)
| | - Brenna X. Hartse
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; (G.A.C.); (B.X.H.); (A.E.N.A.); (M.T.); (M.A.S.); (R.M.); (N.A.); (V.N.); (L.J.O.)
| | - Amir Ehsan Niaraki Asli
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; (G.A.C.); (B.X.H.); (A.E.N.A.); (M.T.); (M.A.S.); (R.M.); (N.A.); (V.N.); (L.J.O.)
| | - Mehrnoosh Taghavimehr
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; (G.A.C.); (B.X.H.); (A.E.N.A.); (M.T.); (M.A.S.); (R.M.); (N.A.); (V.N.); (L.J.O.)
| | - Niloofar Hashemi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 11365, Iran;
| | - Mehran Abbasi Shirsavar
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; (G.A.C.); (B.X.H.); (A.E.N.A.); (M.T.); (M.A.S.); (R.M.); (N.A.); (V.N.); (L.J.O.)
| | - Reza Montazami
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; (G.A.C.); (B.X.H.); (A.E.N.A.); (M.T.); (M.A.S.); (R.M.); (N.A.); (V.N.); (L.J.O.)
| | - Nima Alimoradi
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; (G.A.C.); (B.X.H.); (A.E.N.A.); (M.T.); (M.A.S.); (R.M.); (N.A.); (V.N.); (L.J.O.)
| | - Vahid Nasirian
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; (G.A.C.); (B.X.H.); (A.E.N.A.); (M.T.); (M.A.S.); (R.M.); (N.A.); (V.N.); (L.J.O.)
| | - Lionel J. Ouedraogo
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; (G.A.C.); (B.X.H.); (A.E.N.A.); (M.T.); (M.A.S.); (R.M.); (N.A.); (V.N.); (L.J.O.)
| | - Nicole N. Hashemi
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; (G.A.C.); (B.X.H.); (A.E.N.A.); (M.T.); (M.A.S.); (R.M.); (N.A.); (V.N.); (L.J.O.)
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
5
|
Meenakshi S, Pandian K, Gopinath S. Quantitative simultaneous determination of pentoxifylline and paracetamol in drug and biological samples at graphene nanoflakes modified electrode. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2019.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Cheng X, Wan Q, Pei X. Graphene Family Materials in Bone Tissue Regeneration: Perspectives and Challenges. NANOSCALE RESEARCH LETTERS 2018; 13:289. [PMID: 30229504 PMCID: PMC6143492 DOI: 10.1186/s11671-018-2694-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/28/2018] [Indexed: 02/05/2023]
Abstract
We have witnessed abundant breakthroughs in research on the bio-applications of graphene family materials in current years. Owing to their nanoscale size, large specific surface area, photoluminescence properties, and antibacterial activity, graphene family materials possess huge potential for bone tissue engineering, drug/gene delivery, and biological sensing/imaging applications. In this review, we retrospect recent progress and achievements in graphene research, as well as critically analyze and discuss the bio-safety and feasibility of various biomedical applications of graphene family materials for bone tissue regeneration.
Collapse
Affiliation(s)
- Xinting Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
| |
Collapse
|
7
|
Meenakshi S, Jancy Sophia S, Pandian K. High surface graphene nanoflakes as sensitive sensing platform for simultaneous electrochemical detection of metronidazole and chloramphenicol. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:407-419. [DOI: 10.1016/j.msec.2018.04.064] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 04/06/2018] [Accepted: 04/20/2018] [Indexed: 01/01/2023]
|
8
|
RGD peptide doped polypyrrole film as a biomimetic electrode coating for impedimetric sensing of cell proliferation and cytotoxicity. J Appl Biomed 2017. [DOI: 10.1016/j.jab.2017.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
9
|
Jasim DA, Murphy S, Newman L, Mironov A, Prestat E, McCaffey J, Meńard-Moyon C, Rodrigues AF, Bianco A, Haigh S, Lennon R, Kostarelos K. The Effects of Extensive Glomerular Filtration of Thin Graphene Oxide Sheets on Kidney Physiology. ACS NANO 2016; 10:10753-10767. [PMID: 27936585 PMCID: PMC7614378 DOI: 10.1021/acsnano.6b03358] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Understanding how two-dimensional (2D) nanomaterials interact with the biological milieu is fundamental for their development toward biomedical applications. When thin, individualized graphene oxide (GO) sheets were administered intravenously in mice, extensive urinary excretion was observed, indicating rapid transit across the glomerular filtration barrier (GFB). A detailed analysis of kidney function, histopathology, and ultrastructure was performed, along with the in vitro responses of two highly specialized GFB cells (glomerular endothelial cells and podocytes) following exposure to GO. We investigated whether these cells preserved their unique barrier function at doses 100 times greater than the dose expected to reach the GFB in vivo. Both serum and urine analyses revealed that there was no impairment of kidney function up to 1 month after injection of GO at escalating doses. Histological examination suggested no damage to the glomerular and tubular regions of the kidneys. Ultrastructural analysis by transmission electron microscopy showed absence of damage, with no change in the size of podocyte slits, endothelial cell fenestra, or the glomerular basement membrane width. The endothelial and podocyte cell cultures regained their full barrier function after >48 h of GO exposure, and cellular uptake was significant in both cell types after 24 h. This study provided a previously unreported understanding of the interaction between thin GO sheets with different components of the GFB in vitro and in vivo to highlight that the glomerular excretion of significant amounts of GO did not induce any signs of acute nephrotoxicity or glomerular barrier dysfunction.
Collapse
Affiliation(s)
- Dhifaf A. Jasim
- Nanomedicine Laboratory, Faculty of Biology, Medicine and Health, Manchester M13 9NT, United Kingdom
- National Graphene Institute, Manchester M13 9NT, United Kingdom
| | - Stephanie Murphy
- Wellcome Trust Centre for Cell-Matrix Research, Manchester M13 9NT, United Kingdom
| | - Leon Newman
- Nanomedicine Laboratory, Faculty of Biology, Medicine and Health, Manchester M13 9NT, United Kingdom
- National Graphene Institute, Manchester M13 9NT, United Kingdom
| | | | - Eric Prestat
- National Graphene Institute, Manchester M13 9NT, United Kingdom
- School of Materials, University of Manchester, Manchester M13 9PL, United Kingdom
| | - James McCaffey
- Wellcome Trust Centre for Cell-Matrix Research, Manchester M13 9NT, United Kingdom
- Department of Pediatric Nephrology, Royal Manchester Children’s Hospital, Central Manchester University Hospitals NHS Foundation Trust (CMFT), Manchester Academic Health Science Centre, Manchester M13 9NT, United Kingdom
| | - Cećilia Meńard-Moyon
- University of Strasbourg, CNRS, Immunopathology and Therapeutic Chemistry, UPR 3572, 67000 Strasbourg, France
| | - Artur Filipe Rodrigues
- Nanomedicine Laboratory, Faculty of Biology, Medicine and Health, Manchester M13 9NT, United Kingdom
- National Graphene Institute, Manchester M13 9NT, United Kingdom
| | - Alberto Bianco
- University of Strasbourg, CNRS, Immunopathology and Therapeutic Chemistry, UPR 3572, 67000 Strasbourg, France
| | - Sarah Haigh
- National Graphene Institute, Manchester M13 9NT, United Kingdom
- School of Materials, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Rachel Lennon
- Wellcome Trust Centre for Cell-Matrix Research, Manchester M13 9NT, United Kingdom
- Department of Pediatric Nephrology, Royal Manchester Children’s Hospital, Central Manchester University Hospitals NHS Foundation Trust (CMFT), Manchester Academic Health Science Centre, Manchester M13 9NT, United Kingdom
- Corresponding Authors
| | - Kostas Kostarelos
- Nanomedicine Laboratory, Faculty of Biology, Medicine and Health, Manchester M13 9NT, United Kingdom
- National Graphene Institute, Manchester M13 9NT, United Kingdom
- Corresponding Authors
| |
Collapse
|
10
|
Ou L, Song B, Liang H, Liu J, Feng X, Deng B, Sun T, Shao L. Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms. Part Fibre Toxicol 2016; 13:57. [PMID: 27799056 PMCID: PMC5088662 DOI: 10.1186/s12989-016-0168-y] [Citation(s) in RCA: 417] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/13/2016] [Indexed: 02/06/2023] Open
Abstract
Due to their unique physicochemical properties, graphene-family nanomaterials (GFNs) are widely used in many fields, especially in biomedical applications. Currently, many studies have investigated the biocompatibility and toxicity of GFNs in vivo and in intro. Generally, GFNs may exert different degrees of toxicity in animals or cell models by following with different administration routes and penetrating through physiological barriers, subsequently being distributed in tissues or located in cells, eventually being excreted out of the bodies. This review collects studies on the toxic effects of GFNs in several organs and cell models. We also point out that various factors determine the toxicity of GFNs including the lateral size, surface structure, functionalization, charge, impurities, aggregations, and corona effect ect. In addition, several typical mechanisms underlying GFN toxicity have been revealed, for instance, physical destruction, oxidative stress, DNA damage, inflammatory response, apoptosis, autophagy, and necrosis. In these mechanisms, (toll-like receptors-) TLR-, transforming growth factor β- (TGF-β-) and tumor necrosis factor-alpha (TNF-α) dependent-pathways are involved in the signalling pathway network, and oxidative stress plays a crucial role in these pathways. In this review, we summarize the available information on regulating factors and the mechanisms of GFNs toxicity, and propose some challenges and suggestions for further investigations of GFNs, with the aim of completing the toxicology mechanisms, and providing suggestions to improve the biological safety of GFNs and facilitate their wide application.
Collapse
Affiliation(s)
- Lingling Ou
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Bin Song
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Huimin Liang
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Jia Liu
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Xiaoli Feng
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Bin Deng
- The General Hospital of People’s Liberation Army, Beijing, China
| | - Ting Sun
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| |
Collapse
|
11
|
Graphene in therapeutics delivery: Problems, solutions and future opportunities. Eur J Pharm Biopharm 2016; 104:235-50. [DOI: 10.1016/j.ejpb.2016.04.015] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/12/2016] [Accepted: 04/18/2016] [Indexed: 01/05/2023]
|
12
|
Abstract
The delivery of genetic materials into cells to elicit cellular response has been extensively studied by biomaterials scientists globally.
Collapse
Affiliation(s)
- Xian Jun Loh
- Institute of Materials Research and Engineering
- A*STAR
- (Agency for Science
- Technology and Research)
- Singapore 117602
| | - Tung-Chun Lee
- UCL Institute for Materials Discovery and Department of Chemistry
- University College London
- London WC1H 0AJ
- UK
| | - Qingqing Dou
- Institute of Materials Research and Engineering
- A*STAR
- (Agency for Science
- Technology and Research)
- Singapore 117602
| | - G. Roshan Deen
- Soft Materials Laboratory
- Natural Sciences and Science Education
- National Institute of Education
- Nanyang Technological University
- 637616 Singapore
| |
Collapse
|
13
|
Oxidative Stress and Mitochondrial Activation as the Main Mechanisms Underlying Graphene Toxicity against Human Cancer Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:5851035. [PMID: 26649139 PMCID: PMC4662972 DOI: 10.1155/2016/5851035] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/10/2015] [Accepted: 07/21/2015] [Indexed: 11/27/2022]
Abstract
Due to the development of nanotechnology graphene and graphene-based nanomaterials have attracted the most attention owing to their unique physical, chemical, and mechanical properties. Graphene can be applied in many fields among which biomedical applications especially diagnostics, cancer therapy, and drug delivery have been arousing a lot of interest. Therefore it is essential to understand better the graphene-cell interactions, especially toxicity and underlying mechanisms for proper use and development. This review presents the recent knowledge concerning graphene cytotoxicity and influence on different cancer cell lines.
Collapse
|
14
|
Gu W, Zhu P, Jiang D, He X, Li Y, Ji J, Zhang L, Sun Y, Sun X. A novel and simple cell-based electrochemical impedance biosensor for evaluating the combined toxicity of DON and ZEN. Biosens Bioelectron 2015; 70:447-54. [DOI: 10.1016/j.bios.2015.03.074] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 10/23/2022]
|
15
|
Nurunnabi M, Parvez K, Nafiujjaman M, Revuri V, Khan HA, Feng X, Lee YK. Bioapplication of graphene oxide derivatives: drug/gene delivery, imaging, polymeric modification, toxicology, therapeutics and challenges. RSC Adv 2015; 5:42141-42161. [DOI: 10.1039/c5ra04756k] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This review article summarizes the latest progress in research regarding bioapplications of graphene oxide derivatives and provides expert opinions on strategies for overcoming the current challenges.
Collapse
Affiliation(s)
- Md Nurunnabi
- Department of Chemical and Biological Engineering
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
| | - Khaled Parvez
- Max Plank Institute for Polymer Research
- Mainz 55128
- Germany
| | - Md Nafiujjaman
- Department of Green Bioengineering
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
| | - Vishnu Revuri
- Department of Green Bioengineering
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
| | - Haseeb A. Khan
- Analytical and Molecular Bioscience Research Group
- Department of Biochemistry
- College of Science
- King Saud University
- Riyadh 11451
| | - Xinliang Feng
- Max Plank Institute for Polymer Research
- Mainz 55128
- Germany
- Department of Chemistry and Food Chemistry
- Technische Universität Dresden
| | - Yong-kyu Lee
- Department of Chemical and Biological Engineering
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
- Department of Green Bioengineering
| |
Collapse
|
16
|
Nezakati T, Cousins BG, Seifalian AM. Toxicology of chemically modified graphene-based materials for medical application. Arch Toxicol 2014; 88:1987-2012. [PMID: 25234085 PMCID: PMC4201927 DOI: 10.1007/s00204-014-1361-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 09/03/2014] [Indexed: 12/12/2022]
Abstract
This review article aims to provide an overview of chemically modified graphene, and graphene oxide (GO), and their impact on toxicology when present in biological systems. Graphene is one of the most promising nanomaterials due to unique physicochemical properties including enhanced optical, thermal, and electrically conductive behavior in addition to mechanical strength and high surface-to-volume ratio. Graphene-based nanomaterials have received much attention over the last 5 years in the biomedical field ranging from their use as polymeric conduits for nerve regeneration, carriers for targeted drug delivery and in the treatment of cancer via photo-thermal therapy. Both in vitro and in vivo biological studies of graphene-based nanomaterials help understand their relative toxicity and biocompatibility when used for biomedical applications. Several studies investigating important material properties such as surface charge, concentration, shape, size, structural defects, and chemical functional groups relate to their safety profile and influence cyto- and geno-toxicology. In this review, we highlight the most recent studies of graphene-based nanomaterials and outline their unique properties, which determine their interactions under a range of environmental conditions. The advent of graphene technology has led to many promising new opportunities for future applications in the field of electronics, biotechnology, and nanomedicine to aid in the diagnosis and treatment of a variety of debilitating diseases.
Collapse
Affiliation(s)
- Toktam Nezakati
- UCL Centre for Nanotechnology and Regeneration Medicine, Division of Surgery and Interventional Science, University College London, London, UK
| | - Brian G. Cousins
- UCL Centre for Nanotechnology and Regeneration Medicine, Division of Surgery and Interventional Science, University College London, London, UK
| | - Alexander M. Seifalian
- UCL Centre for Nanotechnology and Regeneration Medicine, Division of Surgery and Interventional Science, University College London, London, UK
- Royal Free London NHS Foundation Trust, London, UK
| |
Collapse
|