1
|
Wei B, Xu Y, Tang C, Liu NQ, Li X, Yao Q, Wang L. An injectable active hydrogel based on BMSC-derived extracellular matrix for cartilage regeneration enhancement. BIOMATERIALS ADVANCES 2024; 160:213857. [PMID: 38657287 DOI: 10.1016/j.bioadv.2024.213857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/20/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Articular cartilage injury impairs joint function and necessitates orthopedic intervention to restore the structure and function of the cartilage. Extracellular matrix (ECM) scaffolds derived from bone marrow mesenchymal stem cells (BMSCs) can effectively promote cell adhesion, proliferation, and chondrogenesis. However, pre-shaped ECM scaffolds have limited applicability due to their poor fit with the irregular surface of most articular cartilage defects. In this study, we fabricated an injectable active ECM hydrogel from autologous BMSCs-derived ECM by freeze-drying, liquid nitrogen milling, and enzymatic digestion. Moreover, our in vitro and in vivo results demonstrated that the prepared hydrogel enhanced chondrocyte adhesion and proliferation, chondrogenesis, cartilage regeneration, and integration with host tissue, respectively. These findings indicate that active ECM components can provide trophic support for cell proliferation and differentiation, restoring the structure and function of damaged cartilage.
Collapse
Affiliation(s)
- Bo Wei
- Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; Cartilage Regeneration Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China.
| | - Yan Xu
- Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; Cartilage Regeneration Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Cheng Tang
- Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; Cartilage Regeneration Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Nancy Q Liu
- Department of Orthopaedic Surgery, University of Southern California, Los Angeles, CA 90007, USA
| | - Xuxiang Li
- Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; Cartilage Regeneration Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Qingqiang Yao
- Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; Cartilage Regeneration Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Liming Wang
- Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; Cartilage Regeneration Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China.
| |
Collapse
|
2
|
Jeyaraman M, Muthu S, Nischith DS, Jeyaraman N, Nallakumarasamy A, Khanna M. PRISMA-Compliant Meta-Analysis of Randomized Controlled Trials on Osteoarthritis of Knee Managed with Allogeneic vs Autologous MSCs: Efficacy and Safety Analysis. Indian J Orthop 2022; 56:2042-2059. [PMID: 36507199 PMCID: PMC9705690 DOI: 10.1007/s43465-022-00751-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 09/06/2022] [Indexed: 02/08/2023]
Abstract
STUDY DESIGN Meta-analysis. OBJECTIVES Our objective is to review the randomized controlled trials (RCTs) that have been conducted previously on the topic of osteoarthritis of the knee to assess and compare the efficacy and safety of autologous and allogeneic sources of mesenchymal stromal cells (MSCs) in the treatment of osteoarthritis. MATERIALS AND METHODS We searched the electronic databases PubMed, Embase, Web of Science, and the Cochrane Library until August 2021 for randomised controlled trials (RCTs) analysing the efficacy and safety of autologous and allogeneic sources of MSCs in the management of knee osteoarthritis. These searches were conducted independently and in duplicate. The outcomes that were taken into consideration for analysis were the visual analogue score (VAS) for pain, the Western Ontario McMaster Universities Osteoarthritis Index (WOMAC), the Lysholm score, and adverse events. The OpenMeta [Analyst] software was utilised to carry out the analysis in the R platform. RESULTS In total, 21 studies with a total of 936 patients were considered for this analysis. Because none of the studies made a direct comparison of the autologous and allogeneic sources of MSCs, we pooled the results of all of the included studies of both sources and made a comparative analysis of how the two types of MSCs fared in their respective applications. Although both allogeneic and autologous sources of MSCs demonstrated significantly better VAS improvement after 6 months (p = 0.006, p = 0.001), this trend was not maintained after 1 year for the allogeneic source (p = 0.171, p = 0.027). When compared to their respective controls based on WOMAC scores after 1 year, autologous sources (p = 0.016) of MSCs performed better than allogeneic sources (p = 0.186).A similar response was noted between the sources at 2 years in their Lysholm scores (p = 0.682, p = 0.017), respectively. Moreover, allogeneic sources (p = 0.039) of MSCs produced significant adverse events than autologous sources (p = 0.556) compared to their controls. CONCLUSION Our analysis of literature showed that autologous sources of MSCs stand superior to allogeneic sources of MSC with regard to their consistent efficacy for pain, functional outcomes, and safety. However, we strongly recommend that further studies be conducted that are of a high enough quality to validate our findings and reach a consensus on the best source of MSCs for use in cellular therapy treatments for knee osteoarthritis. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s43465-022-00751-z.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine, Sri Lalithambigai Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai, Tamil Nadu India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Uttar Pradesh, Greater Noida, India
- Indian Stem Cell Study Group (ISCSG) Association, Uttar Pradesh, Lucknow, India
| | - Sathish Muthu
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Uttar Pradesh, Greater Noida, India
- Indian Stem Cell Study Group (ISCSG) Association, Uttar Pradesh, Lucknow, India
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul, Tamil Nadu India
| | - D. S. Nischith
- Indian Stem Cell Study Group (ISCSG) Association, Uttar Pradesh, Lucknow, India
- Fellow in Orthopaedic Rheumatology, Dr. RML National Law University, Uttar Pradesh, Lucknow, India
| | - Naveen Jeyaraman
- Indian Stem Cell Study Group (ISCSG) Association, Uttar Pradesh, Lucknow, India
- Fellow in Orthopaedic Rheumatology, Dr. RML National Law University, Uttar Pradesh, Lucknow, India
- Fellow in Joint Replacement, Atlas Hospitals, Tiruchirappalli, Tamil Nadu India
| | - Arulkumar Nallakumarasamy
- Indian Stem Cell Study Group (ISCSG) Association, Uttar Pradesh, Lucknow, India
- Fellow in Orthopaedic Rheumatology, Dr. RML National Law University, Uttar Pradesh, Lucknow, India
- Department of Orthopaedics, All India Institute of Medical Sciences, Bhubaneswar, Odisha India
| | - Manish Khanna
- Indian Stem Cell Study Group (ISCSG) Association, Uttar Pradesh, Lucknow, India
| |
Collapse
|
3
|
Tan G, Chen R, Tu X, Guo L, Guo L, Xu J, Zhang C, Zou T, Sun S, Jiang Q. Research on the osteogenesis and biosafety of ECM–Loaded 3D–Printed Gel/SA/58sBG scaffolds. Front Bioeng Biotechnol 2022; 10:973886. [PMID: 36061449 PMCID: PMC9438739 DOI: 10.3389/fbioe.2022.973886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Employing scaffolds containing cell–derived extracellular matrix (ECM) as an alternative strategy for the regeneration of bone defects has shown prominent advantages. Here, gelatin (Gel), sodium alginate (SA) and 58s bioactive glass (58sBG) were incorporated into deionized water to form ink, which was further fabricated into composite scaffolds by the 3D printing technique. Then, rat aortic endothelial cells (RAOECs) or rat bone mesenchymal stem cells (RBMSCs) were seeded on the scaffolds. After decellularization, two kinds of ECM–loaded scaffolds (RAOECs–ECM scaffold and RBMSCs–ECM scaffold) were obtained. The morphological characteristics of the scaffolds were assessed meticulously by scanning electron microscopy (SEM). In addition, the effects of scaffolds on the proliferation, adhesion, and osteogenic and angiogenic differentiation of RBMSCs were evaluated by Calcein AM staining and reverse transcription polymerase chain reaction (RT–PCR). In vivo, full–thickness bone defects with a diameter of 5 mm were made in the mandibles of Sprague–Dawley (SD) rats to assess the bone regeneration ability and biosafety of the scaffolds at 4, 8 and 16 weeks. The osteogenic and angiogenic potential of the scaffolds were investigated by microcomputed tomography (Micro–CT) and histological analysis. The biosafety of the scaffolds was evaluated by blood biochemical indices and histological staining of the liver, kidney and cerebrum. The results showed that the ECM–loaded scaffolds were successfully prepared, exhibiting interconnected pores and a gel–like ECM distributed on their surfaces. Consistently, in vitro experiments demonstrated that the scaffolds displayed favourable cytocompatibility. In vitro osteogenic differentiation studies showed that scaffolds coated with ECM could significantly increase the expression of osteogenic and angiogenic genes. In addition, the results from mandibular defect repair in vivo revealed that the ECM–loaded scaffolds effectively promoted the healing of bone defects when compared to the pure scaffold. Overall, these findings demonstrate that both RAOECs–ECM scaffold and RBMSCs–ECM scaffold can greatly enhance bone formation with good biocompatibility and thus have potential for clinical application in bone regeneration.
Collapse
Affiliation(s)
- Guozhong Tan
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Rongfeng Chen
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Xinran Tu
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Liyang Guo
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Lvhua Guo
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Jingyi Xu
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Chengfei Zhang
- Endodontology, Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Ting Zou
- Endodontology, Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Shuyu Sun
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Shuyu Sun, ; Qianzhou Jiang,
| | - Qianzhou Jiang
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- *Correspondence: Shuyu Sun, ; Qianzhou Jiang,
| |
Collapse
|
4
|
Jeyaraman M, Shivaraj B, Bingi SK, Ranjan R, Muthu S, Khanna M. Does vehicle-based delivery of mesenchymal stromal cells give superior results in knee osteoarthritis? Meta-analysis of randomized controlled trials. J Clin Orthop Trauma 2022; 25:101772. [PMID: 35127439 PMCID: PMC8803619 DOI: 10.1016/j.jcot.2022.101772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/06/2022] [Accepted: 01/13/2022] [Indexed: 02/08/2023] Open
Abstract
STUDY DESIGN Meta-analysis. OBJECTIVES We aim to analyze and compare the efficacy and safety of vehicle-based delivery of Mesenchymal Stromal Cells (MSCs) in the management of osteoarthritis of the knee from Randomized Controlled Trials (RCTs) available in the literature. MATERIALS AND METHODS We conducted independent and duplicate electronic database searches including PubMed, Embase, Web of Science, and Cochrane Library till August 2021 for RCTs analyzing the efficacy and safety of vehicle-based delivery of MSCs in the management of knee osteoarthritis. Visual Analog Score (VAS) for Pain, Western Ontario McMaster Universities Osteoarthritis Index (WOMAC), Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) score, and adverse events were the outcomes analyzed. Analysis was performed in R-platform using OpenMeta [Analyst] software. RESULTS 21 studies involving 936 patients were included for analysis. None of the studies made a direct comparison of the direct and vehicle-based delivery of MSCs, hence we pooled the results of all the included studies of both groups and made a comparative analysis of their outcomes. Although at 6 months, both direct and vehicle-based delivery of MSCs showed significantly better VAS improvement (p = 0.002, p = 0.010), it was not consistent at 1 year for the vehicle delivery (p = 0.973). During 6 months and 12 months, direct delivery of MSCs (p < 0.001, p < 0.001) outperformed vehicle delivery (p = 0.969, p = 0.922) compared to their control based on WOMAC scores respectively. Both direct (p = 0.713) and vehicle-based delivery (p = 0.123) of MSCs did not produce significant adverse events compared to their controls. CONCLUSION Our analysis of literature showed that current clinically employed methods of vehicle-based delivery of MSCs such as platelet-rich plasma, hyaluronic acid did not demonstrate superior results compared to direct delivery, concerning the efficacy of treatment measured by improvement in pain, functional outcomes, and safety. Hence, we urge future clinical trials to be conducted to validate the effectiveness of advanced delivery vehicles such as composite bioscaffolds to establish their practical utility in cartilage regeneration with respect to its encouraging in-vitro evidence.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, India
| | - B. Shivaraj
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, India
- Dr. RML National Law University, Lucknow, Uttar Pradesh, India
| | - Shiva Kumar Bingi
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, India
- Dr. RML National Law University, Lucknow, Uttar Pradesh, India
| | - Rajni Ranjan
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Sathish Muthu
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, India
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul, Tamil Nadu, India
| | - Manish Khanna
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, India
| |
Collapse
|
5
|
Zhang X, Liu Y, Clark KL, Padget AM, Alexander PG, Dai J, Zhu W, Lin H. Mesenchymal stem cell-derived extracellular matrix (mECM): a bioactive and versatile scaffold for musculoskeletal tissue engineering. ACTA ACUST UNITED AC 2020; 16:012002. [PMID: 32906098 DOI: 10.1088/1748-605x/abb6b3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem cell-derived extracellular matrix (mECM) has received increased attention in the fields of tissue engineering and scaffold-assisted regeneration. mECM exhibits many unique characteristics, such as robust bioactivity, biocompatibility, ease of use, and the potential for autologous tissue engineering. As the use of mECM has increased in musculoskeletal tissue engineering, it should be noted that mECM generated from current methods has inherited insufficiencies, such as low mechanical properties and lack of internal architecture. In this review, we first summarize the development and use of mECM as a scaffold for musculoskeletal tissue regeneration and highlight our current progress on moving this technology toward clinical application. Then we review recent methods to improve the properties of mECM that will overcome current weaknesses. Lastly, we propose future studies that will pave the road for mECM application in regenerating tissues in humans.
Collapse
Affiliation(s)
- Xiurui Zhang
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America. Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, People's Republic of China. These authors contributed equally to this work
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Assunção M, Dehghan-Baniani D, Yiu CHK, Später T, Beyer S, Blocki A. Cell-Derived Extracellular Matrix for Tissue Engineering and Regenerative Medicine. Front Bioeng Biotechnol 2020; 8:602009. [PMID: 33344434 PMCID: PMC7744374 DOI: 10.3389/fbioe.2020.602009] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Cell-derived extracellular matrices (CD-ECMs) captured increasing attention since the first studies in the 1980s. The biological resemblance of CD-ECMs to their in vivo counterparts and natural complexity provide them with a prevailing bioactivity. CD-ECMs offer the opportunity to produce microenvironments with costumizable biological and biophysical properties in a controlled setting. As a result, CD-ECMs can improve cellular functions such as stemness or be employed as a platform to study cellular niches in health and disease. Either on their own or integrated with other materials, CD-ECMs can also be utilized as biomaterials to engineer tissues de novo or facilitate endogenous healing and regeneration. This review provides a brief overview over the methodologies used to facilitate CD-ECM deposition and manufacturing. It explores the versatile uses of CD-ECM in fundamental research and therapeutic approaches, while highlighting innovative strategies. Furthermore, current challenges are identified and it is accentuated that advancements in methodologies, as well as innovative interdisciplinary approaches are needed to take CD-ECM-based research to the next level.
Collapse
Affiliation(s)
- Marisa Assunção
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Dorsa Dehghan-Baniani
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chi Him Kendrick Yiu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Thomas Später
- Institute for Clinical and Experimental Surgery, University of Saarland, Saarbrücken, Germany
| | - Sebastian Beyer
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Anna Blocki
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
7
|
Yao QQ, Hu J, Zheng PF, Li JY, Zhou J, Tian SC, Wei B, Xu Y, Wang LM. In vitro evaluation of marrow clot enrichment on microstructure decoration, cell delivery and proliferation of porous titanium scaffolds by selective laser melting three-dimensional printing. J Biomed Mater Res B Appl Biomater 2017; 106:2245-2253. [PMID: 29083526 DOI: 10.1002/jbm.b.34032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 09/09/2017] [Accepted: 09/24/2017] [Indexed: 12/26/2022]
Abstract
Titanium alloy is a clinically approved material for bone substitution. Although three-dimensional printing (3DP) fabrication technique can build up porous Ti scaffolds with the designed shape and microstructure, the biomechanical performance of 3DP Ti scaffolds still need to be improved to increase the reliability of osseointegration capacity. To address this issue, rabbit bone marrow clot (MC) is used to modify 3DP Ti scaffolds by stem cell delivery and microenvironment decoration inside the pores of these scaffolds. Moreover, 3DP Ti scaffolds were built up using selective laser melting, and 3DP MC-Ti scaffolds were constructed through the enrichment of MC with Ti scaffolds in vitro. Results demonstrated that the obtained 3DP Ti scaffolds in current study has an average modulus of elasticity (ME) at 1294.48 MPa with average yield strength of 33.154 MPa. For MC-Ti scaffolds, MC enrichment obstructs the pores of 3DP scaffolds due to the large amount of fibrin and erythrocytes and leads to a decrease in ratio of live cells at 1-week culture. Cell proliferation and osteogenic differentiation performance of MC-Ti scaffolds were promoted with porous recanalization in the later 3 weeks. After 2 weeks in vitro culture, fivefold of cell number in MC-Ti scaffolds were observed than bone marrow-derived mesenchymal stem cell-seeded Ti scaffolds. Compared to Ti scaffolds, fourfold of deoxyribonucleic acid content, type I collagen-α1, osteocalcin, and alkaline phosphatase expression in MC-Ti scaffolds were observed after 4 weeks in vitro culture. Results suggested that the combination with MC is a highly efficient method that improves the biological performance of Ti scaffolds. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2245-2253, 2018.
Collapse
Affiliation(s)
- Qing-Qiang Yao
- Department of Orthopaedic surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Key Lab of Biomaterial and Additive Manufacturing Research, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China.,Clinical Orthopaedic Medical Center of Nanjing Metro, Nanjing First Hospital, Nanjing, China
| | - Jun Hu
- Department of Orthopaedic surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Key Lab of Biomaterial and Additive Manufacturing Research, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China
| | - Peng-Fei Zheng
- Department of Orthopaedic surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Key Lab of Biomaterial and Additive Manufacturing Research, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China
| | - Jia-Yi Li
- Key Lab of Biomaterial and Additive Manufacturing Research, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China.,Clinical Orthopaedic Medical Center of Nanjing Metro, Nanjing First Hospital, Nanjing, China
| | - Jin Zhou
- Department of Orthopaedic surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shu-Chang Tian
- Department of Orthopaedic surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Bo Wei
- Department of Orthopaedic surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Key Lab of Biomaterial and Additive Manufacturing Research, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China
| | - Yan Xu
- Key Lab of Biomaterial and Additive Manufacturing Research, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China.,Clinical Orthopaedic Medical Center of Nanjing Metro, Nanjing First Hospital, Nanjing, China
| | - Li-Ming Wang
- Department of Orthopaedic surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Key Lab of Biomaterial and Additive Manufacturing Research, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China.,Clinical Orthopaedic Medical Center of Nanjing Metro, Nanjing First Hospital, Nanjing, China
| |
Collapse
|
8
|
Salamanna F, Contartese D, Nicoli Aldini N, Barbanti Brodano G, Griffoni C, Gasbarrini A, Fini M. Bone marrow aspirate clot: A technical complication or a smart approach for musculoskeletal tissue regeneration? J Cell Physiol 2017. [PMID: 28639702 DOI: 10.1002/jcp.26065] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
One of the methods employed to improve healing of damaged tissues is the use of cellular based therapies. A number of regenerative medicine based strategies, from in vitro expanded mesenchymal stem cells (MSCs) to "one-step" procedures using bone marrow (BM) in toto (BM aspirate; BMA) or BM concentrate (BMC), have been developed. Recently, orthopedic researchers focused their attention on the clinical therapeutic potential of BMC and BMA for musculoskeletal regeneration. BMA is reported as an excellent source of cells and growth factors. However, the quality of BM harvest and aspirate is extremely technique-dependent and, due to the presence of megakaryocytes and platelets, BMA is prone to clot. BMA clot formation is usually considered a complication hampering the procedures on both BMC preparation and MSC expansion. Therefore, different protocols have been developed to avoid and/or degrade clots. However, from a biological point of view there is a strong rationale for the use of BMA clot for tissue engineering strategies. This descriptive systematic literature review summarizes preclinical and clinical studies dealing the use of BMA clot for orthopedic procedures and provided some evidence supporting its use as a cell based therapy for cartilage and bone regeneration. Despite these results, there are still few preclinical and clinical studies that carefully evaluate the safety and efficacy of BMA clot in orthopedic procedures. Thus, implementing biological knowledge and both preclinical and clinical studies could help researchers and clinicians to understand if BMA clots can really be considered a possible therapeutic tool.
Collapse
Affiliation(s)
- Francesca Salamanna
- Laboratory of Biocompatibility, Technological Innovation and Advanced Therapy, Rizzoli RIT, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Deyanira Contartese
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Nicolò Nicoli Aldini
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Giovanni Barbanti Brodano
- Department of Oncological and Degenerative Spine Surgery, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Cristiana Griffoni
- Department of Oncological and Degenerative Spine Surgery, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Alessandro Gasbarrini
- Department of Oncological and Degenerative Spine Surgery, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Milena Fini
- Laboratory of Biocompatibility, Technological Innovation and Advanced Therapy, Rizzoli RIT, Rizzoli Orthopedic Institute, Bologna, Italy
| |
Collapse
|
9
|
Zhang W, Zhu Y, Li J, Guo Q, Peng J, Liu S, Yang J, Wang Y. Cell-Derived Extracellular Matrix: Basic Characteristics and Current Applications in Orthopedic Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:193-207. [PMID: 26671674 DOI: 10.1089/ten.teb.2015.0290] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Weixiang Zhang
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Yun Zhu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Jia Li
- Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Quanyi Guo
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
- The Neural Regeneration Co-innovation Center of Jiangsu Province, Nantong, Jiangsu Province, China
| | - Shichen Liu
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Jianhua Yang
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
- The Neural Regeneration Co-innovation Center of Jiangsu Province, Nantong, Jiangsu Province, China
| |
Collapse
|