1
|
Sass JO, Kebbach M, Lork C, Johannsen J, Weinmann M, Stenzel M, Bader R. Computational biomechanical study on hybrid implant materials for the femoral component of total knee replacements. J Mech Behav Biomed Mater 2024; 158:106681. [PMID: 39151255 DOI: 10.1016/j.jmbbm.2024.106681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/15/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Multifunctional materials have been described to meet the diverse requirements of implant materials for femoral components of uncemented total knee replacements. These materials aim to combine the high wear and corrosion resistance of oxide ceramics at the joint surfaces with the osteogenic potential of titanium alloys at the bone-implant interface. Our objective was to evaluate the biomechanical performance of hybrid material-based femoral components regarding mechanical stress within the implant during cementless implantation and stress shielding (evaluated by strain energy density) of the periprosthetic bone during two-legged squat motion using finite element modeling. The hybrid materials consisted of alumina-toughened zirconia (ATZ) ceramic joined with additively manufactured Ti-6Al-4V or Ti-35Nb-6Ta alloys. The titanium component was modeled with or without an open porous surface structure. Monolithic femoral components of ATZ ceramic or Co-28Cr-6Mo alloy were used as reference. The elasticity of the open porous surface structure was determined within experimental compression tests and was significantly higher for Ti-35Nb-6Ta compared to Ti-6Al-4V (5.2 ± 0.2 GPa vs. 8.8 ± 0.8 GPa, p < 0.001). During implantation, the maximum stress within the ATZ femoral component decreased from 1568.9 MPa (monolithic ATZ) to 367.6 MPa (Ti-6Al-4V/ATZ), 560.9 MPa (Ti-6Al-4V/ATZ with an open porous surface), 474.9 MPa (Ti-35Nb-6Ta/ATZ), and 648.4 MPa (Ti-35Nb-6Ta/ATZ with an open porous surface). The strain energy density increased at higher flexion angles for all models during the squat movement. At ∼90° knee flexion, the strain energy density in the anterior region of the distal femur increased by 25.7 % (Ti-6Al-4V/ATZ), 70.3 % (Ti-6Al-4V/ATZ with an open porous surface), 43.7 % (Ti-35Nb-6Ta/ATZ), and 82.5% (Ti-35Nb-6Ta/ATZ with an open porous surface) compared to monolithic ATZ. Thus, the hybrid material-based femoral component decreases the intraoperative fracture risk of the ATZ part and considerably reduces the risk of stress shielding of the periprosthetic bone.
Collapse
Affiliation(s)
- Jan-Oliver Sass
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopedics, Rostock University Medical Center, Doberaner Straße 142, D-18057 Rostock, Germany.
| | - Maeruan Kebbach
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopedics, Rostock University Medical Center, Doberaner Straße 142, D-18057 Rostock, Germany
| | - Cornelia Lork
- ZM Praezisionsdentaltechnik GmbH, Breite Straße 16, D-18055 Rostock, Germany
| | - Jan Johannsen
- Fraunhofer Research Institution for Additive Manufacturing Technologies IAPT, Am Schleusengraben 14, D-21029 Hamburg, Germany
| | | | | | - Rainer Bader
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopedics, Rostock University Medical Center, Doberaner Straße 142, D-18057 Rostock, Germany
| |
Collapse
|
2
|
Snega Priya P, Pratiksha Nandhini P, Arockiaraj J. A comprehensive review on environmental pollutants and osteoporosis: Insights into molecular pathways. ENVIRONMENTAL RESEARCH 2023; 237:117103. [PMID: 37689340 DOI: 10.1016/j.envres.2023.117103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
A significant problem that has an impact on community wellbeing is environmental pollution. Environmental pollution due to air, water, or soil pollutants might pose a severe risk to global health, necessitating intense scientific effort. Osteoporosis is a common chronic condition with substantial clinical implications on mortality, morbidity, and quality of life. It is closely linked to bone fractures. Worldwide, osteoporosis affects around 200 million people, and every year, there are almost 9 million fractures. There is evidence that certain environmental factors may increase the risk of osteoporosis in addition to traditional risk factors. It is crucial to understand the molecular mechanisms at play because there is a connection between osteoporosis and exposure to environmental pollutants such as heavy metals, air pollutants, endocrine disruptors, metal ions and trace elements. Hence, in this scoping review, we explore potential explanations for the link between pollutants and bone deterioration through deep insights into molecular pathways. Understanding and recognizing these pollutants as modifiable risk factors for osteoporosis would possibly help to enhance environmental policy thereby aiding in the improvement of bone health and improving patient quality of life.
Collapse
Affiliation(s)
- P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - P Pratiksha Nandhini
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
3
|
Wu Q, Chen B, Yu X, Wang Z, Sun Z, Duan J, Ding H, Wu W, Bao N, Zhao J. Bone and Soft Tissue Reaction to Co(II)/Cr(III) Ions Stimulation in a Murine Calvaria Model: A Pioneering in vivo Study. Acta Biomater 2023; 164:659-670. [PMID: 37003495 DOI: 10.1016/j.actbio.2023.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
Metal ions released during wear and corrosion of the artificial knee/hip joints are considered to contribute to aseptic implant failure. However, there are few convincing in vivo studies that demonstrate the effects of metal ions on bone and soft tissue. This study examined the in vivo effects of Co(II)/Cr(III) ions on mouse calvaria and the supra-calvaria soft tissue in an original mouse model. With the implantation of a helmet-like structure, we set up a subcutaneous cavity on the calvaria in which Co(II) Chloride or Cr(III) Chloride solutions were administered respectively. A layer of interface membrane formed on the calvaria along with the implantation of the helmet. The administered Cr(III) ions accumulated in the interface membranes while Co(II) disseminated into the circulation. Accumulated Cr(III) and related products induced local massive macrophage infiltration and skewed the bone metabolic balance. At last, we revealed that lymphocyte aggregates, which are the pathologic hallmark of human periprosthetic tissue, could be caused by either Co(II) or Cr(III) stimulation. These in vivo results may shed light on the effects and pathogenic mechanism of the Co(II)/Cr(III) ions released from the joint prosthesis. STATEMENT OF SIGNIFICANCE: Macrophage infiltration and lymphocyte aggregates are hallmarks of human joint periprosthetic tissue. We chronically administered Co(II)/Cr(III) ions on mouse calvaria and reproduced these two histopathologic hallmarks on mouse tissue based on an implanted helmet-like structure. Our results reveal that Cr(III) ions are locally accumulated and are effective in inducing macrophage infiltration and they can be phagocytosed and stored. However, the lymphocytes aggregates could be induced by both Co(II), Cr(III) and other unspecific inflammatory stimuli.
Collapse
Affiliation(s)
- Qi Wu
- Department of Orthopaedics, Affiliated Jinling Hospital, Medical School of Nanjing University, 305 Zhongshandonglu Road, Nanjing 210002, China
| | - Bin Chen
- Department of Orthopaedics, Affiliated Jinling Hospital, Medical School of Nanjing University, 305 Zhongshandonglu Road, Nanjing 210002, China
| | - Xin Yu
- Department of Orthopaedics, Affiliated Jinling Hospital, Medical School of Nanjing University, 305 Zhongshandonglu Road, Nanjing 210002, China
| | - Zhen Wang
- Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Zhongyang Sun
- Department of Orthopaedics, Affiliated Jinling Hospital, Medical School of Nanjing University, 305 Zhongshandonglu Road, Nanjing 210002, China
| | - Jiahua Duan
- Department of Orthopaedics, Affiliated Jinling Hospital, Medical School of Nanjing University, 305 Zhongshandonglu Road, Nanjing 210002, China
| | - Hao Ding
- Department of Orthopaedics, Affiliated Jinling Hospital, Medical School of Nanjing University, 305 Zhongshandonglu Road, Nanjing 210002, China
| | - Weiwei Wu
- Department of Vascular Surgery, Beijing Tsinghua Changgung Hospital, Tsinghua University Medical Center, Beijing 102218, China
| | - Nirong Bao
- Department of Orthopaedics, Affiliated Jinling Hospital, Medical School of Nanjing University, 305 Zhongshandonglu Road, Nanjing 210002, China.
| | - Jianning Zhao
- Department of Orthopaedics, Affiliated Jinling Hospital, Medical School of Nanjing University, 305 Zhongshandonglu Road, Nanjing 210002, China.
| |
Collapse
|
4
|
Shen L, Li H, Liu R, Zhou C, Bretches M, Gong X, Lu L, Zhang Y, Zhao K, Ning B, Yang SY, Zhang A. DEPDC1 as a crucial factor in the progression of human osteosarcoma. Cancer Med 2023; 12:5798-5808. [PMID: 36479633 PMCID: PMC10028160 DOI: 10.1002/cam4.5340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/22/2022] [Accepted: 07/03/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Novel therapeutic strategies are emerging with the increased understanding of the underlying mechanisms of human osteosarcoma. This current study tends to decipher the potentially critical role of DEP domain-containing 1 (DEPDC1), a tumor-related gene, during the progression of osteosarcoma. METHODS Bioinformatics analysis of 25,035 genes from the National Center for Biotechnology Information (NCBI) databases was performed to screen differentially expressed genes between osteosarcoma and normal control groups, complemented by the examination of 85 clinical osteosarcoma specimens. Furthermore, the manipulation of DEPDC1 expression levels by using silencing RNA (siRNA) or lentiviral vector intervention on human osteosarcoma cells was performed to reveal its role and interactions in in vitro and in vivo settings. RESULTS Gene expression profile analysis and immunohistochemical (IHC) examination suggested that DEPDC1 is highly expressed in human osteosarcoma cells and tumor tissue. The silencing of DEPDC1 arrested osteosarcoma cell proliferation, promoted apoptosis, and ceased tumor metastasis. Studies involving clinical human osteosarcoma cases exhibited a strong correlation of DEPDC1 over-expressed osteosarcoma specimens with a reduced patient survival rate. CONCLUSIONS Collectively, this study demonstrated that DEPDC1 is a critical driver in the promotion of osteosarcoma progression and results in poor patient prognosis. Genetically targeting or pharmacologically inhibiting DEPDC1 may serve as a promising strategy for treating human osteosarcoma.
Collapse
Affiliation(s)
- Lin Shen
- Department of Orthopaedics, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Han Li
- Department of Endocrinology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Ronghan Liu
- Department of Orthopaedics, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chendan Zhou
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Morgan Bretches
- Department of Orthopaedic Surgery, University of Kansas School of Medicine-Wichita, Wichita, Kansas, USA
- Department of Biological Sciences, Wichita State University, Wichita, Kansas, USA
| | - Xuan Gong
- Department of Biological Sciences, Wichita State University, Wichita, Kansas, USA
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Laitong Lu
- Department of Orthopaedics, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ying Zhang
- Department of Orthopaedics, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Kai Zhao
- Department of Orthopaedics, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Bin Ning
- Department of Orthopaedics, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shang-You Yang
- Department of Orthopaedic Surgery, University of Kansas School of Medicine-Wichita, Wichita, Kansas, USA
- Department of Biological Sciences, Wichita State University, Wichita, Kansas, USA
| | - Aijun Zhang
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
5
|
Meng X, Zhang W, Lyu Z, Long T, Wang Y. ZnO nanoparticles attenuate polymer-wear-particle induced inflammatory osteolysis by regulating the MEK-ERK-COX-2 axis. J Orthop Translat 2022; 34:1-10. [PMID: 35531425 PMCID: PMC9046564 DOI: 10.1016/j.jot.2022.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 11/25/2022] Open
Abstract
Background/Objectives Advanced thermoplastic materials, such as polyether-ether-ketone (PEEK) and highly cross-linked polyethylene (HXLPE), have been increasingly used as orthopaedic implant materials. Similar to other implants, PEEK-on-HXLPE prostheses produce debris from polymer wear that may activate the immune response, which can cause osteolysis, and ultimately implant failure. In this study, we examined whether the anti-inflammatory properties of zinc oxide nanoparticles (ZnO NPs) could attenuate polymer wear particle-induced inflammation. Methods RAW264.7 cells were cultured with PEEK or PE particles and gradient concentrations of ZnO NPs. Intracellular mRNA expression and protein levels of pro-inflammatory factors TNF-α, IL-1β, and IL-6 were detected. An air pouch mouse model was constructed to examine the inflammatory response and expression of pro-inflammatory factors in vivo. Furthermore, an osteolysis rat model was used to evaluate the activation of osteoclasts and destruction of bone tissue induced by polymer particles with or without ZnO NPs. Protein expression of the MEK-ERK-COX-2 pathway was also examined by western blotting to elucidate the mechanism underlying particle-induced anti-inflammatory effects. Results ZnO NPs (≤50 nm, 5 μg/mL) showed no obvious cytotoxicity and attenuated PEEK or PE particle-induced inflammation and inflammatory osteolysis by reducing MEK and ERK phosphorylation and decreasing COX-2 expression. Conclusion ZnO NPs (≤50 nm, 5 μg/mL) attenuated polymer wear particle-induced inflammation via regulation of the MEK-ERK-COX-2 axis. Further, ZnO NPs reduced bone tissue damage caused by particle-induced inflammatory osteolysis. The translational potential of this article Polymer wear particles can induce inflammation and osteolysis in the body after arthroplasty. ZnO NPs attenuated polymer particle-induced inflammation and inflammatory osteolysis. Topical use of ZnO NPs and blended ZnO NP/polymer composites may provide promising approaches for inhibiting polymer wear particle-induced inflammatory osteolysis, thus expanding the range of polymers used in joint prostheses.
Collapse
|
6
|
da Costa Fernandes CJ, de Almeida GS, Pinto TS, Teixeira SA, Bezerra FJ, Zambuzzi WF. Metabolic effects of CoCr-enriched medium on shear-stressed endothelial cell and osteoblasts: A possible mechanism involving a hypoxic condition on bone healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112353. [PMID: 34474901 DOI: 10.1016/j.msec.2021.112353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/22/2022]
Abstract
Cobalt-chromium (CoCr)-based alloys have emerged as an interesting biomaterial within biomedical field, mainly considering their biocompatibility, resistance to corrosion and absence of magnetism; however, its effect on cell metabolism is barely known and this prompted us better evaluating whether CoCr-enriched medium affects the metabolism of both osteoblast and endothelial cells, and also if there is a coupling between them. This is also considered here the already-known effect of Cobalt (Co) as a hypoxic element. Firstly, discs of CoCr [subjecting (W) or not (Wo) to dual acid-etched (DAE)] were incubated into FBS-free cell culture medium up to 24 h (37 °C). This CoCr-enriched medium was further used to treat shear-stressed endothelial cells cultures up to 72 h. Thereafter, the conditioned medium containing metabolites of shear-stressed endothelial cells in response to CoCr-enriched medium was further used to subject osteoblast's cultures, when the samples were properly harvested to allow the analysis of the molecular issues. Our data shows that CoCr-enriched medium contains 1.5 ng-2.0 ng/mL of Co, which was captured by endothelial cells and osteoblasts in about 30% in amount and it seems modulate their metabolic pathways: shear-stressed endothelial cells expressed higher profile of HIF1α, VEGF and nNOS genes, while their global profile of protein carbonylation was lower than the control cultures, suggesting lower oxidative stress commitment. Additionally, osteoblasts responding to metabolites of CoCr-challenged endothelial cells show dynamic expression of marker genes in osteogenic differentiation, with alkaline phosphatase (ALP), osteocalcin, and bone sialoprotein (BSP) genes being significantly increased. Additionally, tensional shear-stress forces decrease the stimulus for ColA1gene expression in osteoblasts responding to endothelial cells metabolites, as well as modifying the extracellular matrix remodeling related genes. Analyzing the activities of matrix metalloproteinases (MMPs), the data shows that shear-stressed endothelial cells metabolites increase the activities of both MMP9 and MMP2 in osteoblasts. Altogether, our data shows for the first time that shear-stressed endothelial metabolites responding to CoCr discs contribute to osteogenic phenotype in vitro, and this predicts an active crosstalk between angiogenesis and osteogenesis during osseointegration of CoCr alloy and bone healing, maybe guided by the Co-induced hypoxic condition.
Collapse
Affiliation(s)
- Célio Junior da Costa Fernandes
- Lab. of Bioassays and Cell Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP - Universidade Estadual Paulista, Botucatu, São Paulo 18618-970, Brazil
| | - Gerson Santos de Almeida
- Lab. of Bioassays and Cell Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP - Universidade Estadual Paulista, Botucatu, São Paulo 18618-970, Brazil
| | - Thais Silva Pinto
- Lab. of Bioassays and Cell Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP - Universidade Estadual Paulista, Botucatu, São Paulo 18618-970, Brazil
| | - Suelen Aparecida Teixeira
- Lab. of Bioassays and Cell Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP - Universidade Estadual Paulista, Botucatu, São Paulo 18618-970, Brazil
| | - Fábio J Bezerra
- Lab. of Bioassays and Cell Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP - Universidade Estadual Paulista, Botucatu, São Paulo 18618-970, Brazil
| | - Willian Fernando Zambuzzi
- Lab. of Bioassays and Cell Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP - Universidade Estadual Paulista, Botucatu, São Paulo 18618-970, Brazil.
| |
Collapse
|
7
|
Hameister R, Lohmann CH, Dheen ST, Singh G, Kaur C. The effect of TNF-α on osteoblasts in metal wear-induced periprosthetic bone loss. Bone Joint Res 2020; 9:827-839. [PMID: 33179535 PMCID: PMC7672328 DOI: 10.1302/2046-3758.911.bjr-2020-0001.r2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aims This study aimed to examine the effects of tumour necrosis factor-alpha (TNF-α) on osteoblasts in metal wear-induced bone loss. Methods TNF-α immunoexpression was examined in periprosthetic tissues of patients with failed metal-on-metal hip arthroplasties and also in myeloid MM6 cells after treatment with cobalt ions. Viability and function of human osteoblast-like SaOs-2 cells treated with recombinant TNF-α were studied by immunofluorescence, terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assay, western blotting, and enzyme-linked immunosorbent assay (ELISA). Results Macrophages, lymphocytes, and endothelial cells displayed strong TNF-α immunoexpression in periprosthetic tissues containing metal wear debris. Colocalization of TNF-α with the macrophage marker CD68 and the pan-T cell marker CD3 confirmed TNF-α expression in these cells. Cobalt-treated MM6 cells secreted more TNF-α than control cells, reflecting the role of metal wear products in activating the TNF-α pathway in the myeloid cells. While TNF-α did not alter the immunoexpression of the TNF-receptor 1 (TNF-R1) in SaOs-2 cells, it increased the release of the soluble TNF-receptor 1 (sTNF-R1). There was also evidence for TNF-α-induced apoptosis. TNF-α further elicited the expression of the endoplasmic reticulum stress markers inositol-requiring enzyme (IRE)-1α, binding-immunoglobulin protein (BiP), and endoplasmic oxidoreductin1 (Ero1)-Lα. In addition, TNF-α decreased pro-collagen I α 1 secretion without diminishing its synthesis. TNF-α also induced an inflammatory response in SaOs-2 cells, as evidenced by the release of reactive oxygen and nitrogen species and the proinflammatory cytokine vascular endothelial growth factor. Conclusion The results suggest a novel osteoblastic mechanism, which could be mediated by TNF-α and may be involved in metal wear debris-induced periprosthetic bone loss. Cite this article: Bone Joint Res 2020;9(11):827–839.
Collapse
Affiliation(s)
- Rita Hameister
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Christoph H Lohmann
- Department of Orthopaedic Surgery, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - S Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Charanjit Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
8
|
Zhang L, Haddouti EM, Welle K, Burger C, Wirtz DC, Schildberg FA, Kabir K. The Effects of Biomaterial Implant Wear Debris on Osteoblasts. Front Cell Dev Biol 2020; 8:352. [PMID: 32582688 PMCID: PMC7283386 DOI: 10.3389/fcell.2020.00352] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Aseptic loosening subsequent to periprosthetic osteolysis is the leading cause for the revision of arthroplasty failure. The biological response of macrophages to wear debris has been well established, however, the equilibrium of bone remodeling is not only dictated by osteoclastic bone resorption but also by osteoblast-mediated bone formation. Increasing evidence shows that wear debris significantly impair osteoblastic physiology and subsequent bone formation. In the present review, we update the current state of knowledge regarding the effect of biomaterial implant wear debris on osteoblasts. The interaction of osteoblasts with osteoclasts and macrophages under wear debris challenge, and potential treatment options targeting osteoblasts are also presented.
Collapse
Affiliation(s)
- Li Zhang
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - El-Mustapha Haddouti
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Kristian Welle
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Christof Burger
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Dieter C Wirtz
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Frank A Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Koroush Kabir
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
9
|
Local Biological Reactions and Pseudotumor-Like Tissue Formation in relation to Metal Wear in a Murine In Vivo Model. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3649838. [PMID: 31781613 PMCID: PMC6855077 DOI: 10.1155/2019/3649838] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/18/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022]
Abstract
Metal wear debris and released ions (CoCrMo), which are widely generated in metal-on-metal bearings of hip implants, are also found in patients with metal-on-polyethylene bearings due to the mechanically assisted crevice corrosion of modular taper junctions, including head-neck and neck-stem taper interfaces. The resulting adverse reactions to metal debris and metal ions frequently lead to early arthroplasty revision surgery. National guidelines have since been published where the blood metal ion concentration of patients must consistently be monitored after joint replacement to prevent serious complications from developing after surgery. However, to date, the effect of metal particles and metal ions on local biological reactions is complex and still not understood in detail; the present study sought to elucidate the complex mechanism of metal wear-associated inflammation reactions. The knee joints in 4 groups each consisting of 10 female BALB/c mice received injections with cobalt chrome ions, cobalt chrome particles, and ultra-high-molecular-weight polyethylene (UHMWPE) particles or PBS (control). Seven days after injection, the synovial microcirculation and knee joint diameter were assessed via intravital fluorescence microscopy followed by histological evaluation of the synovial layer. Enlarged knee diameter, enhanced leukocyte to endothelial cell interactions, and an increase in functional capillary density within cobalt chrome particle-treated animals were significantly greater than those in the other treatment groups. Subsequently, pseudotumor-like tissue formations were observed only in the synovial tissue layer of the cobalt chrome particle-treated animals. Therefore, these findings strongly suggest that the cobalt chrome particles and not metal ions are the cause for in vivo postsurgery implantation inflammation.
Collapse
|
10
|
Yang S, Zhang K, Jiang J, James B, Yang SY. Particulate and ion forms of cobalt-chromium challenged preosteoblasts promote osteoclastogenesis and osteolysis in a murine model of prosthesis failure. J Biomed Mater Res A 2018; 107:187-194. [PMID: 30358096 DOI: 10.1002/jbm.a.36553] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/13/2018] [Accepted: 09/17/2018] [Indexed: 12/13/2022]
Abstract
This study investigated the interactive behavior of the particulate and ion forms of cobalt-chromium (Co-Cr) alloy challenged preosteoblasts during the process of prosthetic implant loosening. Preosteoblasts were challenged with Co-Cr particles or Co(II) ions for 72 h, followed by the proliferation and PCR assays. For in vivo test, a titanium pin was implanted into proximal tibia of SCID mice to mimic knee replacement. Co-Cr particles or Co(II) ion challenged preosteoblasts (5 × 105 ) were intra-articularly injected into the implanted knee. The animals were sacrificed 5 weeks post-op, and the prosthetic knees were harvested for biomechanical pin-pullout testing, histological evaluations, and microCT assessment. In vitro study suggested that Co-Cr particles and Co(II) ions significantly suppressed the proliferation of preosteoblasts in a dose-dependent manner. RT-PCR data on the challenged cells indicated overexpression of receptor activator of nuclear factor kappa-B ligand (RANKL) and inhibited osteoprotegerin (OPG) gene expression. Introduction of the differently challenged preosteoblasts to the pin-implant mouse model resulted in reduced implant interfacial shear strength, thicker peri-implant soft-tissue formation, more TRAP+ cells, lower bone mineral density, and bone volume fraction. In conclusion, both Co-Cr particles and Co(II) ions interfered with the growth, maturation, and functions of preosteoblasts, and provides evidence that the metal ions as well play an important role in effecting preosteoblasts in the pathogenesis of aseptic loosening. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 187-194, 2019.
Collapse
Affiliation(s)
- Shuye Yang
- Department of Orthopaedic Surgery, The University of Kansas School of Medicine-Wichita, Wichita, Kansas
- Department of Orthopedic Surgery, Affiliated Hospital to Binzhou Medical College, Binzhou, 256603, China
| | - Kai Zhang
- Department of Orthopedic Surgery, Affiliated Hospital to Binzhou Medical College, Binzhou, 256603, China
| | - Jianhao Jiang
- Department of Orthopedic Surgery, Affiliated Hospital to Binzhou Medical College, Binzhou, 256603, China
| | - Bonface James
- Department of Biological Sciences, Wichita State University, Wichita, Kansas, 67260
| | - Shang-You Yang
- Department of Orthopaedic Surgery, The University of Kansas School of Medicine-Wichita, Wichita, Kansas
- Department of Biological Sciences, Wichita State University, Wichita, Kansas, 67260
| |
Collapse
|
11
|
Rentsch B, Bernhardt A, Henß A, Ray S, Rentsch C, Schamel M, Gbureck U, Gelinsky M, Rammelt S, Lode A. Trivalent chromium incorporated in a crystalline calcium phosphate matrix accelerates materials degradation and bone formation in vivo. Acta Biomater 2018; 69:332-341. [PMID: 29355718 DOI: 10.1016/j.actbio.2018.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/19/2017] [Accepted: 01/10/2018] [Indexed: 01/23/2023]
Abstract
Remodeling of calcium phosphate bone cements is a crucial prerequisite for their application in the treatment of large bone defects. In the present study trivalent chromium ions were incorporated into a brushite forming calcium phosphate cement in two concentrations (10 and 50 mmol/mol β-tricalcium phosphate) and implanted into a femoral defect in rats for 3 and 6 month, non-modified brushite was used as reference. Based on our previous in vitro findings indicating both an enhanced osteoclastic activity and cytocompatibility towards osteoprogenitor cells we hypothesized a higher in vivo remodeling rate of the Cr3+ doped cements compared to the reference. A significantly enhanced degradation of the modified cements was evidenced by micro computed tomography, X-ray and histological examinations. Furthermore the formation of new bone tissue after 6 month of implantation was significantly increased from 29% to 46% during remodeling of cements, doped with the higher Cr3+ amount. Time of flight secondary ion mass spectrometry (ToF-SIMS) of histological sections was applied to investigate the release of Cr3+ ions from the cement after implantation and to image their distribution in the implant region and the surrounding bone tissue. The relatively weak incorporation of chromium into the newly formed bone tissue is in agreement to the low chromium concentrations which were released from the cements in vitro. The faster degradation of the Cr3+ doped cements was also verified by ToF-SIMS. The positive effect of Cr3+ doping on both degradation and new bone formation is discussed as a synergistic effect of Cr3+ bioactivity on osteoclastic resorption on one hand and improvement of cytocompatibility and solubility by structural changes in the calcium phosphate matrix on the other hand. STATEMENT OF SIGNIFICANCE While biologically active metal ions like strontium, magnesium and zinc are increasingly applied for the modification of ceramic bone graft materials, the present study is the first report on the incorporation of low doses of trivalent chromium ions into a calcium phosphate based biomaterial and testing of its performance in bone defect regeneration in vivo. Chromium(III)-doped calcium phosphate bone cements show improved cytocompatibility and both degradation rate and new bone formation in vivo are significantly increased compared to the reference cement. This important discovery might be the starting point for the application of trivalent chromium salts for the modification of bone graft materials to increase their remodelling rate.
Collapse
|
12
|
Liao TT, Deng QY, Li SS, Li X, Ji L, Wang Q, Leng YX, Huang N. Evaluation of the Size-Dependent Cytotoxicity of DLC (Diamondlike Carbon) Wear Debris in Arthroplasty Applications. ACS Biomater Sci Eng 2017; 3:530-539. [PMID: 33429620 DOI: 10.1021/acsbiomaterials.6b00618] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Patients with DLC (diamond like carbon)-coated artificial joints may be exposed to a wide size range of DLC wear debris (DW). In this study, the cytotoxicity of DW of different size ranges (0-0.22, 0.22-0.65, 0.65-1.0, and 1.0-5.0 μm) was evaluated. The microstructure and physical characteristics of DW were investigated by Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscope (SEM), and dynamic light scattering (DLS). Macrophages, osteoblasts, and fibroblasts were incubated with DW of different size ranges respectively followed by cytotoxicity evaluations of inflammatory cytokines, alkaline phosphatase (ALP) assays, and related signal protein expression analysis. The results showed that, except for the size range of 0-0.22 μm, DW cytotoxicity showed a size-dependent (0.22-5.0 μm) decrease with increasing size. Within the range of 0.22-5.0 μm, DW of larger size resulted in lessened inflammatory response and enhanced osteoblastogenesis and fibrogenesis, with increased viability of cells (macrophages, osteoblasts, and fibroblasts), better morphology, less release of pro-inflammatory factors and more release of anti-inflammatory factors. The results demonstrated that DW sizes below 0.22 μm had less negative effects on cell adhesion and growth because of the BSA (bovine serum albumin) encapsulation effect. These findings provide valuable knowledge about the comprehensive mechanism of promotion of inflammatory response and inhibition of osteoblastogenesis and fibrogenesis induced by DW. In conclusion, an effective system of biocompatibility evaluation for different sizes of DW was derived.
Collapse
Affiliation(s)
- T T Liao
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Q Y Deng
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - S S Li
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - X Li
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - L Ji
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Q Wang
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Y X Leng
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - N Huang
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| |
Collapse
|
13
|
Veronesi F, Tschon M, Fini M. Gene Expression in Osteolysis: Review on the Identification of Altered Molecular Pathways in Preclinical and Clinical Studies. Int J Mol Sci 2017; 18:E499. [PMID: 28245614 PMCID: PMC5372515 DOI: 10.3390/ijms18030499] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 02/06/2023] Open
Abstract
Aseptic loosening (AL) due to osteolysis is the primary cause of joint prosthesis failure. Currently, a second surgery is still the only available treatment for AL, with its associated drawbacks. The present review aims at identifying genes whose expression is altered in osteolysis, and that could be the target of new pharmacological treatments, with the goal of replacing surgery. This review also aims at identifying the molecular pathways altered by different wear particles. We reviewed preclinical and clinical studies from 2010 to 2016, analyzing gene expression of tissues or cells affected by osteolysis. A total of 32 in vitro, 16 in vivo and six clinical studies were included. These studies revealed that genes belonging to both inflammation and osteoclastogenesis pathways are mainly involved in osteolysis. More precisely, an increase in genes encoding for the following factors were observed: Interleukins 6 and 1β (IL16 and β), Tumor Necrosis Factor α (TNFα), nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), Nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1), Cathepsin K (CATK) and Tartrate-resistant acid phosphatase (TRAP). Titanium (Ti) and Polyethylene (PE) were the most studied particles, showing that Ti up-regulated inflammation and osteoclastogenesis related genes, while PE up-regulated primarily osteoclastogenesis related genes.
Collapse
Affiliation(s)
- Francesca Veronesi
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Matilde Tschon
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, via di Barbiano 1/10, 40136 Bologna, Italy.
| |
Collapse
|
14
|
Liao TT, Deng QY, Wu BJ, Li SS, Li X, Wu J, Leng YX, Guo YB, Huang N. Dose-dependent cytotoxicity evaluation of graphite nanoparticles for diamond-like carbon film application on artificial joints. Biomed Mater 2017; 12:015018. [DOI: 10.1088/1748-605x/aa52ca] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Kim EC, Kim MK, Leesungbok R, Lee SW, Ahn SJ. Co-Cr dental alloys induces cytotoxicity and inflammatory responses via activation of Nrf2/antioxidant signaling pathways in human gingival fibroblasts and osteoblasts. Dent Mater 2016; 32:1394-1405. [PMID: 27671470 DOI: 10.1016/j.dental.2016.09.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/08/2016] [Accepted: 09/03/2016] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Although cobalt-chromium (Co-Cr) dental alloys are routinely used in prosthodontics, the biocompatibility of Co-Cr alloys is controversial. The aims of the present study were to investigate the effects of Co-Cr alloys on human gingival fibroblasts (HGF) and osteoblasts in an in vitro model as well as their potential molecular mechanisms, focusing on NF-E2-related factor 2 (Nrf2) pathways. METHODS Cells were directly seeded on prepared Co-Cr alloy discs (15.0mm diameter, 1.0mm thickness) or indirectly treated with Co-Cr alloy located at the bottom of an insert well and incubated for 3 days. Cytotoxicity and reactive oxygen species (ROS) production was evaluated by MTS assay and flow cytometry, respectively. Protein and mRNA levels were determined by Western blotting and RT-PCR analysis, respectively. RESULTS Cell viability and flow cytometric assay demonstrated that the Co-Cr alloy was cytotoxic to HGFs and osteoblasts, and significantly increased ROS production. In addition, the Co-Cr alloys upregulated pro-inflamamtory cytokines (TNF-α, IL-1β, IL-6, and IL-8) and increased levels of various inflammatory mediators (iNOS derived nitrite oxide, and COX-2-derived PGE2) in both cells. A mechanistic study showed that Co-Cr alloys activates the NRF2 pathway and up-regulate antioxidant enzymes including heme oxygenase-1 (HO-1). Co-Cr alloys activated JAK2/STAT3, p38/ERK/JNK MAPKs and NF-κB signaling pathways. Furthermore, antioxidants (resveratrol and NAC) and HO-1 inhibitor (SnPP) significantly inhibited the production of ROS and inflammatory mediators, as well as the activation of NF-κB signaling in Co-Cr alloy stimulated HGFs and osteoblasts. SIGNIFICANCE This study is the first to show that Co-Cr alloys exert cytotoxic and inflammatory effects via activation of Nrf2/ARE signaling and up-regulation of downstream HO-1, which could represent candidate targets for the regulation of inflammatory responses to Co-Cr alloys.
Collapse
Affiliation(s)
- Eun-Cheol Kim
- Department of Maxillofacial Tissue Regeneration, School of Dentistry and Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Myo-Kyoung Kim
- Department of Maxillofacial Tissue Regeneration, School of Dentistry and Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Richard Leesungbok
- Department of Biomaterials & Prosthodontics, Kyung Hee University Hospital at Gangdong, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Suk-Won Lee
- Department of Biomaterials & Prosthodontics, Kyung Hee University Hospital at Gangdong, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Su-Jin Ahn
- Department of Biomaterials & Prosthodontics, Kyung Hee University Hospital at Gangdong, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|