1
|
Giakoumi M, Stephanou PS, Kokkinidou D, Papastefanou C, Anayiotos A, Kapnisis K. A Predictive Toxicokinetic Model for Nickel Leaching from Vascular Stents. ACS Biomater Sci Eng 2024; 10:2534-2551. [PMID: 38525821 PMCID: PMC11005016 DOI: 10.1021/acsbiomaterials.3c01436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024]
Abstract
In vitro testing methods offer valuable insights into the corrosion vulnerability of metal implants and enable prompt comparison between devices. However, they fall short in predicting the extent of leaching and the biodistribution of implant byproducts under in vivo conditions. Physiologically based toxicokinetic (PBTK) models are capable of quantitatively establishing such correlations and therefore provide a powerful tool in advancing nonclinical methods to test medical implants and assess patient exposure to implant debris. In this study, we present a multicompartment PBTK model and a simulation engine for toxicological risk assessment of vascular stents. The mathematical model consists of a detailed set of constitutive equations that describe the transfer of nickel ions from the device to peri-implant tissue and circulation and the nickel mass exchange between blood and the various tissues/organs and excreta. Model parameterization was performed using (1) in-house-produced data from immersion testing to compute the device-specific diffusion parameters and (2) full-scale animal in situ implantation studies to extract the mammalian-specific biokinetic functions that characterize the time-dependent biodistribution of the released ions. The PBTK model was put to the test using a simulation engine to estimate the concentration-time profiles, along with confidence intervals through probabilistic Monte Carlo, of nickel ions leaching from the implanted devices and determine if permissible exposure limits are exceeded. The model-derived output demonstrated prognostic conformity with reported experimental data, indicating that it may provide the basis for the broader use of modeling and simulation tools to guide the optimal design of implantable devices in compliance with exposure limits and other regulatory requirements.
Collapse
Affiliation(s)
- Matheos Giakoumi
- Department
of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Pavlos S. Stephanou
- Department
of Chemical Engineering, Cyprus University
of Technology, Limassol 3036, Cyprus
| | - Despoina Kokkinidou
- Department
of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol 3036, Cyprus
| | | | - Andreas Anayiotos
- Department
of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Konstantinos Kapnisis
- Department
of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol 3036, Cyprus
| |
Collapse
|
2
|
Kokkinidou D, Kaliviotis E, Shammas C, Anayiotos A, Kapnisis K. An in vivo investigation on the effects of stent implantation on hematological and hemorheological parameters. Clin Hemorheol Microcirc 2024; 87:39-53. [PMID: 38143339 DOI: 10.3233/ch-231921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
BACKGROUND Even though cardiovascular stenting is widely used for the treatment of coronary artery disease, information on how it can affect the hematological and hemorheological profile is scarce in the literature. Most of the work on this issue is based on theoretical or computational fluid dynamics models, lacking in-depth in vitro and in vivo experimental verification. OBJECTIVE This work investigates, in an in vivo setting, the effects of stenting and the implantation time-course on hematological and hemorheological parameters that could potentially compromise the device's functionality and longevity. METHODS Custom-made self-expanding nitinol stents were implanted in the common carotid artery of male CD1 mice. Whole blood samples were collected from control (non-stented) and stented animals at 5 and 10 weeks post-implantation. Hematological measurements and blood viscosity, red blood cell aggregation, and deformability were performed using standard techniques. RESULTS Implant-induced changes were observed in some of the hematological and hemorheological indices. Blood viscosity seems to have been negatively affected by an increased hematocrit and reduced RBC deformability, at 10 weeks post-implantation, despite a slight decrease in RBC aggregation. CONCLUSIONS Although the alterations observed may be the result of the peri-implant inflammatory response, the physiological consequences due to hemorheological changes need to be further investigated.
Collapse
Affiliation(s)
- D Kokkinidou
- Department of Mechanical Engineering and Material Science and Engineering, Cyprus University of Technology, Limassol, Cyprus
| | - E Kaliviotis
- Department of Mechanical Engineering and Material Science and Engineering, Cyprus University of Technology, Limassol, Cyprus
| | - C Shammas
- BIOANALYSIS Clinical Laboratory, Limassol, Cyprus
| | - A Anayiotos
- Department of Mechanical Engineering and Material Science and Engineering, Cyprus University of Technology, Limassol, Cyprus
| | - K Kapnisis
- Department of Mechanical Engineering and Material Science and Engineering, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
3
|
Giakoumi M, Stephanou PS, Kapnisis K, Anayiotos A. On the development of physiologically based toxicokinetic (PBTK) models for cardiovascular implants. Regul Toxicol Pharmacol 2023; 144:105489. [PMID: 37659713 DOI: 10.1016/j.yrtph.2023.105489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Local and systemic contamination caused by metal ions leaching from medical device materials is a significant and continuing health problem. The increasing need for verification and validation, and the imposition of stringent government regulations to ensure that the products comply with the quality, safety, and performance standards, have led regulatory bodies worldwide to strongly recommend the use of modeling and simulation tools to support medical device submissions. A previously published physiologically based toxicokinetic (PBTK) model, is here expanded and enriched by an additional separate tissue compartment to better resemble normal physiology and by the introduction of time-dependent functions to describe all biokinetic parameters. The new model is exercised in conjunction with state-of-the-art probabilistic, Monte Carlo methodology to calculate the predictions' confidence intervals and incorporate variability associated with toxicological biodistribution studies. The quantitative consistency of the model-derived predictions is validated against reported data following the implantation of nickel-containing cardiovascular devices in humans and minipigs. Finally, a new methodology for compartmental toxicological risk assessment is presented that can be used for forward or reverse dosimetry. Our work is aimed at providing a computational tool to optimize the device design characteristics and safeguard that the substances released do not exceed permissible exposure limits.
Collapse
Affiliation(s)
- Matheos Giakoumi
- Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol, 3036, Cyprus.
| | - Pavlos S Stephanou
- Department of Chemical Engineering, Cyprus University of Technology, Limassol, 3036, Cyprus.
| | - Konstantinos Kapnisis
- Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol, 3036, Cyprus.
| | - Andreas Anayiotos
- Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol, 3036, Cyprus.
| |
Collapse
|
4
|
Kapnisis K, Stylianou A, Kokkinidou D, Martin A, Wang D, Anderson PG, Prokopi M, Papastefanou C, Brott BC, Lemons JE, Anayiotos A. Multilevel Assessment of Stent-Induced Inflammation in the Adjacent Vascular Tissue. ACS Biomater Sci Eng 2023; 9:4747-4760. [PMID: 37480152 PMCID: PMC10428095 DOI: 10.1021/acsbiomaterials.3c00540] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
A recent U.S. Food and Drug Administration report presented the currently available scientific information related to biological response to metal implants. In this work, a multilevel approach was employed to assess the implant-induced and biocorrosion-related inflammation in the adjacent vascular tissue using a mouse stent implantation model. The implications of biocorrosion on peri-implant tissue were assessed at the macroscopic level via in vivo imaging and histomorphology. Elevated matrix metalloproteinase activity, colocalized with the site of implantation, and histological staining indicated that stent surface condition and implantation time affect the inflammatory response and subsequent formation and extent of neointima. Hematological measurements also demonstrated that accumulated metal particle contamination in blood samples from corroded-stetted mice causes a stronger immune response. At the cellular level, the stent-induced alterations in the nanostructure, cytoskeleton, and mechanical properties of circulating lymphocytes were investigated. It was found that cells from corroded-stented samples exhibited higher stiffness, in terms of Young's modulus values, compared to noncorroded and sham-stented samples. Nanomechanical modifications were also accompanied by cellular remodeling, through alterations in cell morphology and stress (F-actin) fiber characteristics. Our analysis indicates that surface wear and elevated metal particle contamination, prompted by corroded stents, may contribute to the inflammatory response and the multifactorial process of in-stent restenosis. The results also suggest that circulating lymphocytes could be a novel nanomechanical biomarker for peri-implant tissue inflammation and possibly the early stage of in-stent restenosis. Large-scale studies are warranted to further investigate these findings.
Collapse
Affiliation(s)
- Konstantinos Kapnisis
- Department
of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Andreas Stylianou
- School
of Sciences, European University Cyprus, Nicosia 2404, Cyprus
- Department
of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus
| | - Despoina Kokkinidou
- Department
of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Adam Martin
- Department
of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0111, United States
| | - Dezhi Wang
- Department
of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0111, United States
| | - Peter G. Anderson
- Department
of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0111, United States
| | - Marianna Prokopi
- Department
of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol 3036, Cyprus
| | | | - Brigitta C. Brott
- Department
of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294-0111, United States
| | - Jack E. Lemons
- Department
of Biomedical Engineering, University of
Alabama at Birmingham, Birmingham, Alabama 35294-0111, United States
| | - Andreas Anayiotos
- Department
of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol 3036, Cyprus
| |
Collapse
|
5
|
Evaluation of Biocompatibility of 316 L Stainless Steels Coated with TiN, TiCN, and Ti-DLC Films. COATINGS 2022. [DOI: 10.3390/coatings12081073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this study, TiN, TiCN, and Ti-diamond-like carbon (Ti-DLC) films were coated on 316 L stainless steel (AISI 316 L) substrate surface by physical vapor deposition. The biocompatibility of the three films (TiN, TiCN, and Ti-DLC) and three metals (AISI 316 L, Ti, and Cu) was compared on the basis of the differences in the surface morphology, water contact angle measurements, CCK-8 experiment results, and flow cytometry test findings. The biocompatibility of the TiN and TiCN films is similar to that of AISI 316 L, which has good biocompatibility. However, the biocompatibility of the Ti-DLC films is relatively poor, which is mainly due to the inferior hydrophobicity and large amount of sp2 phases. The presence of TiC nanoclusters on the surface of the Ti-DLC film aggravates the inferior biocompatibility. Compared to the positive Cu control group, the Ti-DLC film had a higher cell proliferation rate and lower cell apoptosis rate. Although the Ti-DLC film inhibited cell survival to a certain extent, it did not show obvious cytotoxicity. TiN and TiCN displayed excellent performance in promoting cell proliferation and reducing cytotoxicity; thus, TiN and TiCN can be considered good orthodontic materials, whereas Ti-DLC films require further improvement.
Collapse
|
6
|
Promising electrodeposited biocompatible coatings for steel obtained from polymerized microemulsions. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Kapnisis K, Seidner H, Prokopi M, Pasias D, Pitsillides C, Anayiotos A, Kaliviotis E. The effects of stenting on hemorheological parameters: An in vitro investigation under various blood flow conditions. Clin Hemorheol Microcirc 2019; 72:375-393. [PMID: 31006672 PMCID: PMC7739967 DOI: 10.3233/ch-180540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Despite their wide clinical usage, stent functionality may be compromised by complications at the site of implantation, including early/late stent thrombosis and occlusion. Although several studies have described the effect of fluid-structure interaction on local haemodynamics, there is yet limited information on the effect of the stent presence on specific hemorheological parameters. The current work investigates the red blood cell (RBC) mechanical behavior and physiological changes as a result of flow through stented vessels. Blood samples from healthy volunteers were prepared as RBC suspensions in plasma and in phosphate buffer saline at 45% haematocrit. Self-expanding nitinol stents were inserted in clear perfluoroalkoxy alkane tubing which was connected to a syringe, and integrated in a syringe pump. The samples were tested at flow rates of 17.5, 35 and 70 ml/min, and control tests were performed in non-stented vessels. For each flow rate, the sample viscosity, RBC aggregation and deformability, and RBC lysis were estimated. The results indicate that the presence of a stent in a vessel has an influence on the hemorheological characteristics of blood. The viscosity of all samples increases slightly with the increase of the flow rate and exposure. RBC aggregation and elongation index (EI) decrease as the flow rate and exposure increases. RBC lysis for the extreme cases is evident. The results indicate that the stresses developed in the stent area for the extreme conditions could be sufficiently high to influence the integrity of the RBC membrane.
Collapse
Affiliation(s)
- K Kapnisis
- Department of Mechanical Engineering and Material Science and Engineering, Cyprus University of Technology, Limasol, Cyprus
| | - H Seidner
- Department of Mechanical Engineering and Material Science and Engineering, Cyprus University of Technology, Limasol, Cyprus
| | - M Prokopi
- Department of Mechanical Engineering and Material Science and Engineering, Cyprus University of Technology, Limasol, Cyprus
| | - D Pasias
- Department of Mechanical Engineering and Material Science and Engineering, Cyprus University of Technology, Limasol, Cyprus
| | - C Pitsillides
- Department of Mechanical Engineering and Material Science and Engineering, Cyprus University of Technology, Limasol, Cyprus
| | - A Anayiotos
- Department of Mechanical Engineering and Material Science and Engineering, Cyprus University of Technology, Limasol, Cyprus
| | - E Kaliviotis
- Department of Mechanical Engineering and Material Science and Engineering, Cyprus University of Technology, Limasol, Cyprus.,Department of Mechanical Engineering, University College London, London, UK
| |
Collapse
|
8
|
Kapnisis K, Constantinou M, Kyrkou M, Nikolaou P, Anayiotos A, Constantinides G. Nanotribological response of a-C:H coated metallic biomaterials: the cases of stainless steel, titanium, and niobium. J Appl Biomater Funct Mater 2018; 16:230-240. [PMID: 29974806 DOI: 10.1177/2280800018782840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background Wear and corrosion have been identified as two of the major forms of medical implant failures. This study aims to improve the surface, protective and tribological characteristics of bare metals used for medical implants, so as to improve scratch resistance and increase lifetime. Methods Hydrogenated amorphous carbon (a-C:H) films were deposited, using plasma enhanced chemical vapor deposition (PECVD), on stainless steel (SS), titanium (Ti) and niobium (Nb) metal plates. Nanomechanical and nanotribological responses were investigated before and after a-C:H deposition. Film thickness and density were quantified through X-ray reflectivity, and surface morphology before and after deposition were measured using atomic force microscopy, whereas the tribomechanical characteristics were probed using instrumented indentation. Results and conclusions Films of approximately 40 nm in thickness and density of 1.7 g/cm3 were deposited. The a-C:H films reduce the roughness and coefficient of friction while improving the tribomechanical response compared with bare metals for Ti, SS and Nb plates. The very good tribomechanical properties of a-C:H make it a promising candidate material for protective coating on metallic implants.
Collapse
Affiliation(s)
- Konstantinos Kapnisis
- 1 Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Lemesos, Cyprus
| | - Marios Constantinou
- 1 Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Lemesos, Cyprus.,2 Research Unit for Nanostructured Materials Systems, Cyprus University of Technology, Lemesos, Cyprus
| | - Maria Kyrkou
- 1 Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Lemesos, Cyprus
| | - Petros Nikolaou
- 1 Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Lemesos, Cyprus.,2 Research Unit for Nanostructured Materials Systems, Cyprus University of Technology, Lemesos, Cyprus
| | - Andreas Anayiotos
- 1 Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Lemesos, Cyprus
| | - Georgios Constantinides
- 1 Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Lemesos, Cyprus.,2 Research Unit for Nanostructured Materials Systems, Cyprus University of Technology, Lemesos, Cyprus
| |
Collapse
|
9
|
|
10
|
Siddiqui DA, Sivan S, Weaver JD, Di Prima M. Effect of wire fretting on the corrosion resistance of common medical alloys. J Biomed Mater Res B Appl Biomater 2016; 105:2487-2494. [PMID: 27660927 DOI: 10.1002/jbm.b.33788] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/27/2016] [Accepted: 09/01/2016] [Indexed: 11/07/2022]
Abstract
Metallic medical devices such as intravascular stents can undergo fretting damage in vivo that might increase their susceptibility to pitting corrosion. As a result, the US Food and Drug Administration has recommended that such devices be evaluated for corrosion resistance after the devices have been fatigue tested in situations where significant micromotion can lead to fretting damage. Three common alloys that cardiovascular implants are made from [MP35N cobalt chromium (MP35N), electropolished nitinol (EP NiTi), and 316LVM stainless steel (316LVM)] were selected for this study. In order to evaluate the effect of wire fretting on the pitting corrosion susceptibility of these medical alloys, small and large fretting scar conditions of each alloy fretting against itself, and the other alloys in phosphate buffered saline (PBS) at 37°C were tested per ASTM F2129 and compared against as received or PBS immersed control specimens. Although the general trend observed was that fretting damage significantly lowered the rest potential (Er ) of these specimens (p < 0.01), fretting damage had no significant effect on the breakdown potential (Eb , p > 0.05) and hence did not affect the susceptibility to pitting corrosion. In summary, our results demonstrate that fretting damage in PBS alone is not sufficient to cause increased susceptibility to pitting corrosion in the three common alloys investigated. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2487-2494, 2017.
Collapse
Affiliation(s)
- Danyal A Siddiqui
- US Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Applied Mechanics, Silver Spring, MD.,Oak Ridge Institute for Science and Education, Oak Ridge, TN
| | - Shiril Sivan
- US Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Applied Mechanics, Silver Spring, MD.,Oak Ridge Institute for Science and Education, Oak Ridge, TN
| | - Jason D Weaver
- US Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Applied Mechanics, Silver Spring, MD
| | - Matthew Di Prima
- US Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Applied Mechanics, Silver Spring, MD
| |
Collapse
|