1
|
Wang Y, Sun C, Liu Z, Zhang S, Gao K, Yi F, Zhou W, Liu H. Nanoengineered Endocytic Biomaterials for Stem Cell Therapy. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202410714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Indexed: 01/05/2025]
Abstract
AbstractStem cells, ideal for the tissue repair and regeneration, possess extraordinary capabilities of multidirectional differentiation and self‐renewal. However, the limited spontaneous differentiation potential makes it challenging to harness them for tissue repair without external intervention. Although conventional approaches using biomolecules, small organic molecules, and ions have shown specific and effective functions, they face challenges such as in vivo diffusion and degradation, poor internalization, and side effects on adjacent cells. Nanoengineered biomaterials offer a solution by solidifying and nanosizing these soluble regulating molecules and ions, facilitating their uptake by stem cells. Once inside lysosomes, these nanoparticles release their contents in a controlled “molecule or ion storm,” efficiently altering the intracellular biological and chemical microenvironment to tune the differentiation of stem cells. This newly emerged approach for regulating stem cell fate has attracted much attention in recent years. This method has shown promising results and is poised to enhance clinical stem cell therapy. This review provides an overview of the design principles for nanoengineered biomaterials, discusses the categories and characteristics of nanoparticles, summarizes the application of nanoparticles in tissue repair and regeneration, and discusses the direction of nanoparticle‐enhanced stem cell therapy and prospects for its clinical application in regenerative medicine.
Collapse
Affiliation(s)
- Yingxue Wang
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Chunhui Sun
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Zhaoying Liu
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Shengmin Zhang
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Ke Gao
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Fan Yi
- School of Basic Medical Sciences Shandong University Jinan 250012 P. R. China
| | - Wenjuan Zhou
- School of Basic Medical Sciences Shandong University Jinan 250012 P. R. China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
- State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| |
Collapse
|
2
|
Lin YC, Hu CC, Liu WC, Dhawan U, Chen YC, Lee YL, Yen HW, Kuo YJ, Chung RJ. Hydrogen-treated CoCrMo alloy: a novel approach to enhance biocompatibility and mitigate inflammation in orthopedic implants. J Mater Chem B 2024; 12:7814-7825. [PMID: 38895823 DOI: 10.1039/d4tb00725e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
In recent decades, orthopedic implants have been widely used as materials to replace human bone tissue functions. Among these, metal implants play a crucial role. Metals with better chemical stability, such as stainless steel, titanium alloys, and cobalt-chromium-molybdenum (CoCrMo) alloy, are commonly used for long-term applications. However, good chemical stability can result in poor tissue integration between the tissue and the implant, leading to potential inflammation risks. This study creates hydrogenated CoCrMo (H-CoCrMo) surfaces, which have shown promise as anti-inflammatory orthopedic implants. Using the electrochemical cathodic hydrogen-charging method, the surface of the CoCrMo alloy was hydrogenated, resulting in improved biocompatibility, reduced free radicals, and an anti-inflammatory response. Hydrogen diffusion to a depth of approximately 106 ± 27 nm on the surface facilitated these effects. This hydrogen-rich surface demonstrated a reduction of 85.2% in free radicals, enhanced hydrophilicity as evidenced by a decrease in a contact angle from 83.5 ± 1.9° to 52.4 ± 2.2°, and an increase of 11.4% in hydroxyapatite deposition surface coverage. The cell study results revealed a suppression of osteosarcoma cell activity to 50.8 ± 2.9%. Finally, the in vivo test suggested the promotion of new bone formation and a reduced inflammatory response. These findings suggest that electrochemical hydrogen charging can effectively modify CoCrMo surfaces, offering a potential solution for improving orthopedic implant outcomes through anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Yu-Chien Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Chih-Chien Hu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linko, Taiwan
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Linko, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wai-Ching Liu
- Department of Food and Health Sciences, Technological and Higher Education Institute of Hong Kong, New Territories, Hong Kong, China
| | - Udesh Dhawan
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, UK
| | - Yu-Chieh Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
| | - Yueh-Lien Lee
- Department of Engineering Science and Ocean Engineering, National Taiwan University, Taipei, Taiwan
| | - Hung-Wei Yen
- Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Yi-Jie Kuo
- Department of Orthopedic Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
- Department of Orthopedic Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
- High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| |
Collapse
|
3
|
Ribeiro AL, Bassai LW, Robert AW, Machado TN, Bezerra AG, Horinouchi CDDS, Aguiar AMD. Bismuth-based nanoparticles impair adipogenic differentiation of human adipose-derived mesenchymal stem cells. Toxicol In Vitro 2021; 77:105248. [PMID: 34560244 DOI: 10.1016/j.tiv.2021.105248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 11/27/2022]
Abstract
Bismuth-based nanoparticles (BiNPs) have attracted attention for their potential biomedical applications. However, there is a lack of information concerning their interaction with biological systems. In this study, it was investigated the effect of physically synthesized BiNPs to human adipose-derived stem cells (ADSCs). We first evaluated the influence of BiNPs on cell viability, cell morphology, mitochondrial function and cell proliferation. Further, the impact of BiNPs on adipogenic differentiation was also explored. Cytotoxicity assays have demonstrated that BiNPs did not reduce relative cell viability of ADSC except at the highest tested concentration (345 μg/ml). Analysis of cell morphology performed by transmission electron microscopy confirmed that BiNPs induced cell damage only at a high concentration (302.24 μg/ml), equivalent to IC50 concentration. Moreover, BiNPs exposure increased the expression of the cell proliferation marker Ki-67 and the incorporation of the thymidine analogue EdU into cell DNA, suggesting that these nanoparticles could be stimulating ADSC proliferation. BiNPs also increased the mitochondrial membrane potential. Furthermore, BiNPs reduced ADSC adipogenic differentiation as measured by lipid droplet accumulation and mRNA expression levels of the specific adipogenesis biomarkers PPARγ, C/EPBɑ and FABP4. Thus, BiNPs affect the nonspecific (viability, proliferation and mitochondrial activity) and specific (adipogenesis) cellular mechanisms of ADSCs.
Collapse
Affiliation(s)
- Annanda Lyra Ribeiro
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas, FIOCRUZ Paraná, Curitiba, Paraná, Brazil
| | - Letícia Werzel Bassai
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas, FIOCRUZ Paraná, Curitiba, Paraná, Brazil; Laboratório de Cultivo de Eucariotos, Instituto de Biologia Molecular do Paraná, Curitiba, Paraná, Brazil
| | - Anny Waloski Robert
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas, FIOCRUZ Paraná, Curitiba, Paraná, Brazil
| | - Thiago Neves Machado
- Laboratório FotoNanoBio, Universidade Tecnológica Federal do Paraná, Curitiba, Paraná, Brazil
| | - Arandi Ginane Bezerra
- Laboratório FotoNanoBio, Universidade Tecnológica Federal do Paraná, Curitiba, Paraná, Brazil
| | | | - Alessandra Melo de Aguiar
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas, FIOCRUZ Paraná, Curitiba, Paraná, Brazil; Rede de Plataformas Tecnológicas FIOCRUZ - Bioensaios com Métodos Alternativos em Citotoxicidade, Instituto Carlos Chagas, FIOCRUZ Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
4
|
Arai Y, Park H, Park S, Kim D, Baek I, Jeong L, Kim BJ, Park K, Lee D, Lee SH. Bile acid-based dual-functional prodrug nanoparticles for bone regeneration through hydrogen peroxide scavenging and osteogenic differentiation of mesenchymal stem cells. J Control Release 2020; 328:596-607. [PMID: 32946872 DOI: 10.1016/j.jconrel.2020.09.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/20/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022]
Abstract
A high level of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) upregulates pro-inflammatory cytokines and inhibits the osteogenic differentiation of mesenchymal stem cells (MSCs), which are key factors in bone regeneration. Ursodeoxycholic acid (UDCA), a hydrophilic bile acid, has antioxidant and anti-inflammatory activities and also plays beneficial roles in bone regeneration by stimulating the osteogenic differentiation of MSCs while suppressing their adipogenic differentiation. Despite its remarkable capacity for bone regeneration, multiple injections of UDCA induce adverse side effects such as mechanical stress and contamination in bone defects. To fully exploit the beneficial roles of UDCA, a concept polymeric prodrug was developed based on the hypothesis that removal of overproduced H2O2 will potentiate the osteogenic functions of UDCA. In this work, we report bone regenerative nanoparticles (NPs) formulated from a polymeric prodrug of UDCA (PUDCA) with UDCA incorporated in its backbone through H2O2-responsive peroxalate linkages. The PUDCA NPs displayed potent antioxidant and anti-inflammatory activities in MSCs and induced osteogenic rather than adipogenic differentiation of the MSCs. In rat models of bone defect, the PUDCA NPs exhibited significantly better bone regeneration capacity and anti-inflammatory effects than equivalent amounts of UDCA. We anticipate that PUDCA NPs have tremendous translational potential as bone regenerative agents.
Collapse
Affiliation(s)
- Yoshie Arai
- Department of Medical Biotechnology, Dongguk University, 04620 Seoul, South Korea
| | - Hyoeun Park
- Department of Medical Biotechnology, Dongguk University, 04620 Seoul, South Korea
| | - Sunghyun Park
- Department of Biomedical Science, CHA University, CHA Biocomplex, 13488 Gyeonggi-do, South Korea
| | - Dohyun Kim
- Department of Medical Biotechnology, Dongguk University, 04620 Seoul, South Korea
| | - Inho Baek
- Department of Medical Biotechnology, Dongguk University, 04620 Seoul, South Korea
| | - Lipjeong Jeong
- Department of BIN Convergence Technology, Jeonbuk National University, 54896 Jeonbuk, South Korea
| | - Byoung Ju Kim
- Department of Medical Biotechnology, Dongguk University, 04620 Seoul, South Korea
| | - Kwideok Park
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), 02792 Seoul, South Korea
| | - Dongwon Lee
- Department of BIN Convergence Technology, Jeonbuk National University, 54896 Jeonbuk, South Korea.
| | - Soo-Hong Lee
- Department of Medical Biotechnology, Dongguk University, 04620 Seoul, South Korea.
| |
Collapse
|
5
|
Yang X, Li Y, He W, Huang Q, Zhang R, Feng Q. Hydroxyapatite/collagen coating on PLGA electrospun fibers for osteogenic differentiation of bone marrow mesenchymal stem cells. J Biomed Mater Res A 2018; 106:2863-2870. [DOI: 10.1002/jbm.a.36475] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/28/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Xing Yang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering; Tsinghua University; Beijing 100084 China
| | - Yuanyuan Li
- Department of Stomatology; Shengli Oilfield Central Hospital; Dongying 257034 China
| | - Wei He
- School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083 China
| | - Qianli Huang
- State Key Laboratory of Powder Metallurgy; Central South University; Changsha 410083 China
| | - Ranran Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering; Tsinghua University; Beijing 100084 China
| | - Qingling Feng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering; Tsinghua University; Beijing 100084 China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering; Tsinghua University; Beijing 100084 China
| |
Collapse
|
6
|
Yang X, Li Y, Liu X, Huang Q, Zhang R, Feng Q. Incorporation of silica nanoparticles to PLGA electrospun fibers for osteogenic differentiation of human osteoblast-like cells. Regen Biomater 2018; 5:229-238. [PMID: 30094062 PMCID: PMC6077779 DOI: 10.1093/rb/rby014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 12/13/2022] Open
Abstract
The development of bone tissue engineering scaffolds still remains a challenging field, although various biomaterials have been developed for this purpose. Electrospinning is a promising approach to fabricate nanofibers with an interconnected porous structure, which can support cell adhesion, guide cell proliferation and regulate cell differentiation. The aim of this study is to fabricate composite fibers composed of poly(lactic-co-glycolic acid) (PLGA) and silica nanoparticles (NPs) via electrospinning and investigate the effect of PLGA/SiO2 composite fibers on the cellular response of osteoblast-like cells (SaOS-2 cells). SEM and EDX analysis showed that silica NPs were homogenously dispersed in the composite fibers. The mechanical behavior of the fibers showed that silica NPs acted as reinforcements at concentrations of 2.5 and 5 mg/ml. The incorporation of silica NPs led to enhancement of cell attachment and spreading on PLGA/SiO2 composite fibers. SaOS-2 cells cultured on PLGA/SiO2 composite fibers exhibited increased alkaline phosphatase activity, collagen secretion and bone nodules formation. The bone nodules formation of SaOS-2 cells increased along with the amount of incorporated silica NPs. The present findings indicate that PLGA/SiO2 composite fibers can stimulate osteogenic differentiation of SaOS-2 cells and may be a promising candidate scaffold for bone tissue engineering.
Collapse
Affiliation(s)
- Xing Yang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Yuanyuan Li
- Department of Stomatology, Shengli Oilfield Central Hospital, Dongying, China
| | - Xujie Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Qianli Huang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China
| | - Ranran Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Qingling Feng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| |
Collapse
|