1
|
A Narrative Review on the Effectiveness of Bone Regeneration Procedures with OsteoBiol® Collagenated Porcine Grafts: The Translational Research Experience over 20 Years. J Funct Biomater 2022; 13:jfb13030121. [PMID: 35997459 PMCID: PMC9397035 DOI: 10.3390/jfb13030121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Over the years, several bone regeneration procedures have been proposed using natural (autografts, allografts, and xenografts) and synthetic (i.e., metals, ceramics, and polymers) bone grafts. In particular, numerous in vitro and human and animal in vivo studies have been focused on the discovery of innovative and suitable biomaterials for oral and maxillofacial applications in the treatment of severely atrophied jaws. On this basis, the main objective of the present narrative review was to investigate the efficacy of innovative collagenated porcine bone grafts (OsteoBiol®, Tecnoss®, Giaveno, Italy), designed to be as similar as possible to the autologous bone, in several bone regeneration procedures. The scientific publications were screened by means of electronic databases, such as PubMed, Scopus, and Embase, finally selecting only papers that dealt with bone substitutes and scaffolds for bone and soft tissue regeneration. A total of 201 papers have been detected, including in vitro, in vivo, and clinical studies. The effectiveness of over 20 years of translational research demonstrated that these specific porcine bone substitutes are safe and able to improve the biological response and the predictability of the regenerative protocols for the treatment of alveolar and maxillofacial defects.
Collapse
|
2
|
Gilman AB, Piskarev MS, Kuznetsov AA. Modification of polyether ether ketone by low-temperature plasma and ion implantation method for use in medicine and biology. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2917-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Pesce P, Menini M, Santori G, Giovanni ED, Bagnasco F, Canullo L. Photo and Plasma Activation of Dental Implant Titanium Surfaces. A Systematic Review with Meta-Analysis of Pre-Clinical Studies. J Clin Med 2020; 9:jcm9092817. [PMID: 32878146 PMCID: PMC7565759 DOI: 10.3390/jcm9092817] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Ultraviolet (UV) and non-thermal plasma functionalization are surface treatment modalities that seem able to improve osseointegration. The aim of this systematic review and meta-analysis is to assess the effect of the two methods and possible differences. Materials and Methods: The systematic research of pre-clinical animal studies was conducted up to May 2020 in the databases PubMed/Medline, Scopus and the Cochrane Lybrary. A meta-analysis was performed by using the DerSimonian–Laird estimator in random-effects models. Results: Through the digital search, 518 articles were identified; after duplicate removal and screening process 10 papers were included. Four studies evaluating UV treatment in rabbits were included in the meta-analysis. The qualitative evaluation of the included studies showed that both UV photofunctionalization and non-thermal plasma argon functionalization of titanium implant surfaces might be effective in vivo to improve the osseointegration. The meta-analysis on four studies evaluating UV treatment in rabbits showed that bone to implant contact values (expressed as standardized mean differences and raw mean differences) were significantly increased in the bio-activated groups when follow-up times were relatively homogeneous, although a high heterogeneity (I2 > 75%) was found in all models. Conclusions: The present systematic review and meta-analysis on pre-clinical studies demonstrated that chair-side treatment of implants with UV or non-thermal plasma appear to be effective for improving osseointegration. This systematic review supports further clinical trials on this topic.
Collapse
Affiliation(s)
- Paolo Pesce
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 16132 Genoa, Italy; (P.P.); (M.M.); (G.S.); (E.D.G.); (F.B.)
| | - Maria Menini
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 16132 Genoa, Italy; (P.P.); (M.M.); (G.S.); (E.D.G.); (F.B.)
| | - Gregorio Santori
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 16132 Genoa, Italy; (P.P.); (M.M.); (G.S.); (E.D.G.); (F.B.)
| | - Emanuele De Giovanni
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 16132 Genoa, Italy; (P.P.); (M.M.); (G.S.); (E.D.G.); (F.B.)
| | - Francesco Bagnasco
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 16132 Genoa, Italy; (P.P.); (M.M.); (G.S.); (E.D.G.); (F.B.)
| | - Luigi Canullo
- Private Practice, Via Nizza, 46, 00198 Rome, Italy
- Correspondence: ; Tel.: +39-347-6201-976
| |
Collapse
|
4
|
Safina I, Bourdo SE, Algazali KM, Kannarpady G, Watanabe F, Vang KB, Biris AS. Graphene-based 2D constructs for enhanced fibroblast support. PLoS One 2020; 15:e0232670. [PMID: 32421748 PMCID: PMC7233589 DOI: 10.1371/journal.pone.0232670] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
Complex skin wounds have always been a significant health and economic problem worldwide due to their elusive and sometimes poor or non-healing conditions. If not well-treated, such wounds may lead to amputation, infections, cancer, or even death. Thus, there is a need to efficiently generate multifunctional skin grafts that address a wide range of skin conditions, including non-healing wounds, and enable the regeneration of new skin tissue. Here, we propose studying pristine graphene and two of its oxygen-functionalized derivatives-high and low-oxygen graphene films-as potential substrates for skin cell proliferation and differentiation. Using BJ cells (human foreskin-derived fibroblasts) to represent basic skin cells, we show that the changes in surface properties of pristine graphene due to oxygen functionalization do not seem to statistically impact the normal proliferation and maturation of skin cells. Our results indicate that the pristine and oxidized graphenes presented relatively low cytotoxicity to BJ fibroblasts and, in fact, support their growth and bioactivity. Therefore, these graphene films could potentially be integrated into more complex skin regenerative systems to support skin regeneration. Because graphene's surface can be relatively easily functionalized with various chemical groups, this finding presents a major opportunity for the development of various composite materials that can act as active components in regenerative applications such as skin regeneration.
Collapse
Affiliation(s)
- Ingrid Safina
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, United States of America
| | - Shawn E. Bourdo
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, United States of America
| | - Karrer M. Algazali
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, United States of America
| | - Ganesh Kannarpady
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, United States of America
| | - Fumiya Watanabe
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, United States of America
| | - Kieng Bao Vang
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, United States of America
| | - Alexandru S. Biris
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, United States of America
| |
Collapse
|
5
|
Canullo L, Genova T, Gross Trujillo E, Pradies G, Petrillo S, Muzzi M, Carossa S, Mussano F. Fibroblast Interaction with Different Abutment Surfaces: In Vitro Study. Int J Mol Sci 2020; 21:ijms21061919. [PMID: 32168919 PMCID: PMC7139398 DOI: 10.3390/ijms21061919] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Attaining an effective mucosal attachment to the transmucosal part of the implant could protect the peri-implant bone. Aim: To evaluate if chair side surface treatments (plasma of Argon and ultraviolet light) may affect fibroblast adhesion on different titanium surfaces designed for soft tissue healing. Methods: Grade 5 titanium discs with four different surface topographies were subdivided into 3 groups: argon-plasma; ultraviolet light, and no treatment. Cell morphology and adhesion tests were performed at 20 min, 24 h, and 72 h. Results: Qualitative observation of the surfaces performed at the SEM was in accordance with the anticipated features. Roughness values ranged from smooth (MAC Sa = 0.2) to very rough (XA Sa = 21). At 20 min, all the untreated surfaces presented hemispherical cells with reduced filopodia, while the cells on treated samples were more spread with broad lamellipodia. However, these differences in spreading behavior disappeared at 24 h and 72 h. Argon-plasma, but not UV, significantly increased the number of fibroblasts independently of the surface type but only at 20 min. Statistically, there was no surface in combination with a treatment that favored a greater cellular adhesion. Conclusions: Data showed potential biological benefits of treating implant abutment surfaces with the plasma of argon in relation to early-stage cell adhesion.
Collapse
Affiliation(s)
- Luigi Canullo
- Private Practice, Via Nizza, 46, 00198 Rome, Italy
- Correspondence: ; Tel.: +39-347-6201-976
| | - Tullio Genova
- Department of Life Sciences and Systems Biology, University of Torino, 10126 Turin, Italy;
- CIR Dental School—Department of Surgical Sciences, University of Torino, Via Nizza 230, 10126 Turin, Italy; (S.C.); (F.M.)
| | - Esperanza Gross Trujillo
- Department of Buccofacial Prosthesis, University Complutense, 28040 Madrid, Spain; (E.G.T.); (G.P.)
| | - Guillermo Pradies
- Department of Buccofacial Prosthesis, University Complutense, 28040 Madrid, Spain; (E.G.T.); (G.P.)
| | - Sara Petrillo
- Department of Molecular Biotechnology and Health Sciences, University of Rome III, 00133 Rome, Italy;
| | - Maurizio Muzzi
- Department of Science, University of Rome III, 00133 Rome, Italy;
| | - Stefano Carossa
- CIR Dental School—Department of Surgical Sciences, University of Torino, Via Nizza 230, 10126 Turin, Italy; (S.C.); (F.M.)
| | - Federico Mussano
- CIR Dental School—Department of Surgical Sciences, University of Torino, Via Nizza 230, 10126 Turin, Italy; (S.C.); (F.M.)
| |
Collapse
|
6
|
Canullo L, Genova T, Pesce P, Nakajima Y, Yonezawa D, Mussano F. Surface bio-functionalization using plasma of argon could alter microbiological and topographic surface analysis of dental implants? Ann Anat 2020; 230:151489. [PMID: 32165207 DOI: 10.1016/j.aanat.2020.151489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 02/07/2020] [Accepted: 02/17/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Plasma of argon was demonstrated to improve protein and cell adhesion on implant surface. On the other hand, increased surface energy and hydrophilicity could potentially amplify the risks of implant surface contamination during clinical phases, risks that have not yet been evaluated in Literature. The aim of the present in vitro study was to verify if Plasma treatment could alter the implant surface characteristics and its ability to remain sterile. MATERIALS AND METHODS Implants from 9 brands were collected (n=11). One implant for each company was used for SEM surface analysis. To perform the microbiological analysis, ten implants from each company were used and randomly split by allocation either in test or control group. To replicate the surgical work flow, both test and control samples were left 60s in clinical environment. Bacterial growth analysis was performed. Optical density at 600nm was measured as readout of bacterial growth and colony forming unit (CFU) after 24h was evaluated. Statistical analysis was performed by using the Wilcoxon Mann Whitney test. A p-value lower than 0.05 was considered significant. RESULTS SEM analysis revealed different categories of implant surface roughness. The optical density confirmed a readout of bacterial growth between 4 and 7 with no significant differences within groups. The number of CFU/ml for each measured sample (test and control) was lower than 102 and failed to present significant differences. CONCLUSION Surface activation using plasma of argon did not affect the degree of implant contamination, allowing to maintain a substantial sterility of the implant independently of its morphology. This may allow in the next future the use of bioactivation through plasma of argon to exploit the superhydrophilicity deriving from this biophysical process.
Collapse
Affiliation(s)
| | | | | | - Yasushi Nakajima
- ARDEC Academy, Ariminum Odontologica, Rimini, Italy; Department of Oral Implantology, Osaka Dental University, Osaka, Japan.
| | - Daichi Yonezawa
- ARDEC Academy, Ariminum Odontologica, Rimini, Italy; Department of Oral Implantology, Osaka Dental University, Osaka, Japan; Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Japan.
| | | |
Collapse
|
7
|
Yang Y, Zheng M, Yang Y, Li J, Su YF, Li HP, Tan JG. Inhibition of bacterial growth on zirconia abutment with a helium cold atmospheric plasma jet treatment. Clin Oral Investig 2020; 24:1465-1477. [DOI: 10.1007/s00784-019-03179-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022]
|
8
|
Effects of argon plasma treatment on the osteoconductivity of bone grafting materials. Clin Oral Investig 2019; 24:2611-2623. [PMID: 31748982 DOI: 10.1007/s00784-019-03119-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/07/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND The osteoconductive properties of bone grafting materials represent one area of research for the management of bony defects found in the fields of periodontology and oral surgery. From a physico-chemical aspect, the wettability of the graft has been demonstrated to be one of the most important factors for new bone formation. It is also well-known that argon plasma treatment (PAT) and ultraviolet irradiation (UV) may increase the surface wettability and, consequently, improve the regenerative potential of the bone grafts. Therefore, the aim of the present in vitro study was to evaluate the effect of PAT and UV treatment on the osteoconductive potential of various bone grafts. MATERIALS AND METHODS The following four frequently used bone grafts were selected for this study: synthetic hydroxyapatite (Mg-HA), biphasic calcium phosphate (BCP), cancellous and cortical xenogenic bone matrices (CaBM, CoBM). Sixty-six serially numbered disks 10 mm in diameter were used for each graft material and randomly assigned to the following three groups: test 1 (PAT), test 2 (UV), and control (no treatment). Six samples underwent topographic analysis using SEM pre- and post-treatments to evaluate changes in surface topography/characteristics. Additionally, cell adhesion and cell proliferation were evaluated at 2 and 72 h respectively following incubation in a three-dimensional culture system utilizing a bioreactor. Furthermore, the effects of PAT and UV on immune cells were assessed by measuring the viability of human macrophages at 24 h. RESULTS The topographic analysis showed different initial morphologies of the commercial biomaterials (e.g., Mg-HA and BCP showed flat morphology; BM samples were extremely porous with high roughness). The surface analysis following experimental treatments did not demonstrate topographical difference when compared with controls. Investigation of cells demonstrated that PAT treatment significantly increased cell adhesion of all 4 evaluated bone substitutes, whereas UV failed to show any statistically significant differences. The viability test revealed no differences in terms of macrophage adhesion on any of the tested surfaces. CONCLUSION Within their limitations, the present results suggest that treatment of various bone grafting materials with PAT appears to enhance the osteoconductivity of bone substitutes in the early stage by improving osteoblast adhesion without concomitantly affecting macrophage viability. CLINICAL RELEVANCE Treatment of bone grafts with PAT appears to result in faster osseointegration of the bone grafting materials and may thus favorably influence bone regeneration.
Collapse
|