1
|
Mostofi M, Mostofi F, Hosseini S, Alipour A, Nourany M, Hamidian R, Vahidi S, Farokhi M, Shokrgozar MA, Homaeigohar S, Wang PY, Shahsavarani H. Efficient three-dimensional (3D) human bone differentiation on quercetin-functionalized isotropic nano-architecture chitinous patterns of cockroach wings. Int J Biol Macromol 2024; 258:129155. [PMID: 38171440 DOI: 10.1016/j.ijbiomac.2023.129155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
Developing cost-effective, biocompatible scaffolds with nano-structured surface that truthfully replicate the physico-(bio)chemical and structural properties of bone tissue's extracellular matrix (ECM) is still challenging. In this regard, surface functionalization of natural scaffolds to enhance capability of mimicking 3D niches of the bone tissue has been suggested as a solution. In the current study, we aimed to investigate the potential of chitin-based cockroach wings (CW) as a natural scaffold for bone tissue engineering. To raise the osteogenic differentiation capacity of such a scaffold, a quercetin coating was also applied (hereafter this scaffold is referred as QCW). Moreover, the QCW scaffold exhibited effective antibacterial properties against gram-positive S. aureus bacteria. With respect to bone regeneration, the QCW scaffold optimally induced the differentiation of adipose-derived human mesenchymal stem cells (AD-hMSCs) into osteoblasts, as validated by mineralization assays, alkaline phosphatase (ALP) activity measurements, expression of pre-osteocyte marker genes, and immunocytochemical staining. Confirmation of the potent biocompatibility and physicochemical characteristics of the QCW scaffold through a series of in vitro and in vivo analysis revealed that surface modification had significant effect on multi-purpose features of obtained scaffold. Altogether, surface modification of QCW made it as an affordable bioinspired scaffold for bone tissue engineering.
Collapse
Affiliation(s)
- Marzieh Mostofi
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Mostofi
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
| | - Saadi Hosseini
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
| | - Atefeh Alipour
- Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Nourany
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank, Pasteur Institute of Iran, Tehran, Iran; Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Reza Hamidian
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank, Pasteur Institute of Iran, Tehran, Iran; Department of Cell and Molecular Biology, Faculty of Life science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Samira Vahidi
- Department of Cell and Molecular Biology, Faculty of Life science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mehdi Farokhi
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Ali Shokrgozar
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
| | | | - Peng Yuan Wang
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Hosein Shahsavarani
- Department of Cell and Molecular Biology, Faculty of Life science and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
2
|
Sivakumar PM, Yetisgin AA, Demir E, Sahin SB, Cetinel S. Polysaccharide-bioceramic composites for bone tissue engineering: A review. Int J Biol Macromol 2023; 250:126237. [PMID: 37567538 DOI: 10.1016/j.ijbiomac.2023.126237] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/05/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Limitations associated with conventional bone substitutes such as autografts, increasing demand for bone grafts, and growing elderly population worldwide necessitate development of unique materials as bone graft substitutes. Bone tissue engineering (BTE) would ensure therapy advancement, efficiency, and cost-effective treatment modalities of bone defects. One way of engineering bone tissue scaffolds by mimicking natural bone tissue composed of organic and inorganic phases is to utilize polysaccharide-bioceramic hybrid composites. Polysaccharides are abundant in nature, and present in human body. Biominerals, like hydroxyapatite are present in natural bone and some of them possess osteoconductive and osteoinductive properties. Ion doped bioceramics could substitute protein-based biosignal molecules to achieve osteogenesis, vasculogenesis, angiogenesis, and stress shielding. This review is a systemic summary on properties, advantages, and limitations of polysaccharide-bioceramic/ion doped bioceramic composites along with their recent advancements in BTE.
Collapse
Affiliation(s)
- Ponnurengam Malliappan Sivakumar
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; School of Medicine and Pharmacy, Duy Tan University, Da Nang 550000, Viet Nam.
| | - Abuzer Alp Yetisgin
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Materials Science and Nano-Engineering Program, Istanbul 34956, Turkey
| | - Ebru Demir
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul 34956, Turkey
| | - Sevilay Burcu Sahin
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul 34956, Turkey
| | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul 34956, Turkey.
| |
Collapse
|
3
|
Niu YQ, Liu JH, Aymonier C, Fermani S, Kralj D, Falini G, Zhou CH. Calcium carbonate: controlled synthesis, surface functionalization, and nanostructured materials. Chem Soc Rev 2022; 51:7883-7943. [PMID: 35993776 DOI: 10.1039/d1cs00519g] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Calcium carbonate (CaCO3) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking, ink, building materials, textiles, cosmetics, and food. Over the last decade, there has been rapid development in the controlled synthesis and surface modification of CaCO3, the stabilization of amorphous CaCO3 (ACC), and CaCO3-based nanostructured materials. In this review, the controlled synthesis of CaCO3 is first examined, including Ca2+-CO32- systems, solid-liquid-gas carbonation, water-in-oil reverse emulsions, and biomineralization. Advancing insights into the nucleation and crystallization of CaCO3 have led to the development of efficient routes towards the controlled synthesis of CaCO3 with specific sizes, morphologies, and polymorphs. Recently-developed surface modification methods of CaCO3 include organic and inorganic modifications, as well as intensified surface reactions. The resultant CaCO3 can then be further engineered via template-induced biomineralization and layer-by-layer assembly into porous, hollow, or core-shell organic-inorganic nanocomposites. The introduction of CaCO3 into nanostructured materials has led to a significant improvement in the mechanical, optical, magnetic, and catalytic properties of such materials, with the resultant CaCO3-based nanostructured materials showing great potential for use in biomaterials and biomedicine, environmental remediation, and energy production and storage. The influences that the preparation conditions and additives have on ACC preparation and stabilization are also discussed. Studies indicate that ACC can be used to construct environmentally-friendly hybrid films, supramolecular hydrogels, and drug vehicles. Finally, the existing challenges and future directions of the controlled synthesis and functionalization of CaCO3 and its expanding applications are highlighted.
Collapse
Affiliation(s)
- Yu-Qin Niu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Jia-Hui Liu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Cyril Aymonier
- Univ Bordeaux, ICMCB, Bordeaux INP, UMR 5026, CNRS, F-33600 Pessac, France
| | - Simona Fermani
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, I-40126 Bologna, Italy. .,Interdepartmental Centre for Industrial Research Health Sciences & Technologies, University of Bologna, 40064 Bologna, Italy
| | - Damir Kralj
- Laboratory for Precipitation Processes, Ruđer Bošković Institute, P. O. Box 1016, HR-10001 Zagreb, Croatia
| | - Giuseppe Falini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, I-40126 Bologna, Italy.
| | - Chun-Hui Zhou
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| |
Collapse
|
4
|
Expression of angiogenesis-related proteins in bone marrow mesenchymal stem cells induced by osteoprotegerin during osteogenic differentiation in rats. Int Immunopharmacol 2021; 98:107821. [PMID: 34118644 DOI: 10.1016/j.intimp.2021.107821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/16/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022]
Abstract
This study aimed to discuss the expression of angiogenesis-related proteins in bone marrow mesenchymal stem cells (BMSCs) induced by osteoprotegerin (OGP) during osteogenic differentiation in rats, and to analyze the effect of fracture healing inflammatory factor TNF-ɑ on the osteogenic differentiation of BMSCs of rats. BMSCs isolated and cultured from the third generation rats were taken as the research object. According to the addition amount of OGP, BMSCs were divided into control group, OGP (10-7 mol/L) group, OGP (10-8 mol/L) group, and OGP (10-9 mol/L) group. The cell growth and morphological characteristics of each group were observed by inverted phase contrast microscope, the cell proliferation rate was measured by MTT method, angiogenesis-related markers (platelet growth factor (VEGF), cingulate protein 5 (Fbln5), and angiogenin-like protein 4 (Angptl4)) were quantitatively detected by Western blot, and the effect of TNF-ɑ on osteogenic differentiation was detected by CCK. Compared with the control group, MTT results showed that the value-added rate of cells in the OGP (10-8 mol/L) group reached the maximum at 9 days (P < 0.05). The ALP activity in osteoblasts in the OGP (10-8 mol/L) group reached the maximum at 9 days (P < 0.01). The OGP (10-8 mol/L) group had the highest expression of vascular regeneration proteins (VEGF, Fbln5, and Angptl4) (P < 0.05). CCK analysis showed that the TNF-ɑ (1.0 ng/mL) group showed a significant increase in absorbance compared with the control group on 6 days (P < 0.05), and the OD value of the TNF-ɑ (10 ng/mL) group decreased at all time points (P < 0.05). Overall, 10-8 mol/L OGP can induce the proliferation and osteogenic differentiation of MSCs, and promote the expression of angiogenesis-related proteins (VEGF, Fbln5, and Angptl4) during osteogenic differentiation. Besides, 1.0 ng/mL of TNF-ɑ can also promote osteogenesis differentiation of BMSCs in the short term.
Collapse
|
5
|
Hemocyanin Modification of Chitosan Scaffolds with Calcium Phosphate Phases Increase the Osteoblast/Osteoclast Activity Ratio-A Co-Culture Study. Molecules 2020; 25:molecules25194580. [PMID: 33036488 PMCID: PMC7582980 DOI: 10.3390/molecules25194580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 12/02/2022] Open
Abstract
The ongoing research on biomaterials that support bone regeneration led to the quest for materials or material modifications that can actively influence the activity or balance of bone tissue cells. The bone biocompatibility of porous chitosan scaffolds was modified in the present study by the addition of calcium phosphates or hemocyanin. The first strategy comprised the incorporation of calcium phosphates into chitosan to create a biomimetic chitosan—mineral phase composite. The second strategy comprised dip-coating of chitosan scaffolds with hemocyanin extracted from crayfish hemolymph. The cytocompatibility was assessed in a mono-culture of human bone marrow stromal cells (hBMSCs) and their differentiation to osteoblasts; in a mono-culture of human monocytes (hMs) and their maturation to osteoclasts; and in a co-culture of hBMSC/osteoblasts—hM/osteoclasts. Mineral incorporation caused an increase in scaffold bioactivity, as shown by reduced calcium concentration in the cell culture medium, delayed differentiation of hBMSCs, and reduced osteoclastic maturation of hMs in mono-culture. Dip-coating with hemocyanin led to increased proliferation of hBMSCs and equivalent osteoclast maturation in mono-culture, while in co-culture, both an inhibitory effect of mineral incorporation on osteoblastogenesis and stimulatory effects of hemocyanin were observed. It was concluded that highly bioactive scaffolds (containing mineral phases) restrain osteoblast and osteoclast development, while hemocyanin coating significantly supports osteoblastogenesis. These influences on the osteoblasts/osteoclasts activity ratio may support scaffold-driven bone healing in the future.
Collapse
|
6
|
Wysokowski M, Machałowski T, Petrenko I, Schimpf C, Rafaja D, Galli R, Ziętek J, Pantović S, Voronkina A, Kovalchuk V, Ivanenko VN, Hoeksema BW, Diaz C, Khrunyk Y, Stelling AL, Giovine M, Jesionowski T, Ehrlich H. 3D Chitin Scaffolds of Marine Demosponge Origin for Biomimetic Mollusk Hemolymph-Associated Biomineralization Ex-Vivo. Mar Drugs 2020; 18:E123. [PMID: 32092907 PMCID: PMC7074400 DOI: 10.3390/md18020123] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Structure-based tissue engineering requires large-scale 3D cell/tissue manufacture technologies, to produce biologically active scaffolds. Special attention is currently paid to naturally pre-designed scaffolds found in skeletons of marine sponges, which represent a renewable resource of biomaterials. Here, an innovative approach to the production of mineralized scaffolds of natural origin is proposed. For the first time, a method to obtain calcium carbonate deposition ex vivo, using living mollusks hemolymph and a marine-sponge-derived template, is specifically described. For this purpose, the marine sponge Aplysin aarcheri and the terrestrial snail Cornu aspersum were selected as appropriate 3D chitinous scaffold and as hemolymph donor, respectively. The formation of calcium-based phase on the surface of chitinous matrix after its immersion into hemolymph was confirmed by Alizarin Red staining. A direct role of mollusks hemocytes is proposed in the creation of fine-tuned microenvironment necessary for calcification ex vivo. The X-ray diffraction pattern of the sample showed a high CaCO3 amorphous content. Raman spectroscopy evidenced also a crystalline component, with spectra corresponding to biogenic calcite. This study resulted in the development of a new biomimetic product based on ex vivo synthetized ACC and calcite tightly bound to the surface of 3D sponge chitin structure.
Collapse
Affiliation(s)
- Marcin Wysokowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland; (T.M.); (T.J.)
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany;
| | - Tomasz Machałowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland; (T.M.); (T.J.)
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany;
| | - Iaroslav Petrenko
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany;
| | - Christian Schimpf
- Institute of Materials Science, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (C.S.); (D.R.)
| | - David Rafaja
- Institute of Materials Science, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (C.S.); (D.R.)
| | - Roberta Galli
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany;
| | - Jerzy Ziętek
- Faculty of Veterinary Medicine, Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences, Głęboka 30, 20612 Lublin, Poland;
| | - Snežana Pantović
- Faculty of Medicine, University of Montenegro, Kruševac bb, 81000 Podgorica, Montenegro;
| | - Alona Voronkina
- Department of Pharmacy, National Pirogov Memorial Medical University, 21018 Vinnitsa, Ukraine;
| | - Valentine Kovalchuk
- Department of Microbiology, National Pirogov Memorial Medical University, 21018 Vinnitsa, Ukraine;
| | - Viatcheslav N. Ivanenko
- Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Bert W. Hoeksema
- Taxonomy and Systematics Group, Naturalis Biodiversity Center, 2333CR Leiden, The Netherlands;
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747AG Groningen, The Netherlands
| | - Cristina Diaz
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 Old Dixie Hwy, Fort Pierce, FL 34946, USA;
| | - Yuliya Khrunyk
- Department of Heat Treatment and Physics of Metal, Ural Federal University, Mira Str. 19, 620002 Ekaterinburg, Russia;
- The Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences, Akademicheskaya Str. 20, 620990 Ekaterinburg, Russia
| | - Allison L. Stelling
- Department of Biochemistry, Duke University Medical School, Durham, NC 27708, USA;
| | - Marco Giovine
- Department of Sciences of Earth, Environment and Life, University of Genoa, Corso Europa 26, 16132 Genova, Italy;
| | - Teofil Jesionowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland; (T.M.); (T.J.)
| | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany;
- Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland
| |
Collapse
|