1
|
Sousa CS, Monteiro A, Salgado AJ, Silva NA. Combinatorial therapies for spinal cord injury repair. Neural Regen Res 2025; 20:1293-1308. [PMID: 38845223 PMCID: PMC11624878 DOI: 10.4103/nrr.nrr-d-24-00061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/28/2024] [Accepted: 05/02/2024] [Indexed: 07/31/2024] Open
Abstract
Spinal cord injuries have profound detrimental effects on individuals, regardless of whether they are caused by trauma or non-traumatic events. The compromised regeneration of the spinal cord is primarily attributed to damaged neurons, inhibitory molecules, dysfunctional immune response, and glial scarring. Unfortunately, currently, there are no effective treatments available that can fully repair the spinal cord and improve functional outcomes. Nevertheless, numerous pre-clinical approaches have been studied for spinal cord injury recovery, including using biomaterials, cells, drugs, or technological-based strategies. Combinatorial treatments, which target various aspects of spinal cord injury pathophysiology, have been extensively tested in the last decade. These approaches aim to synergistically enhance repair processes by addressing various obstacles faced during spinal cord regeneration. Thus, this review intends to provide scientists and clinicians with an overview of pre-clinical combinatorial approaches that have been developed toward the solution of spinal cord regeneration as well as update the current knowledge about spinal cord injury pathophysiology with an emphasis on the current clinical management.
Collapse
Affiliation(s)
- Carla S. Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar – gualtar, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Campus de Gualtar – gualtar, Braga, Portugal
| | - Andreia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar – gualtar, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Campus de Gualtar – gualtar, Braga, Portugal
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar – gualtar, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Campus de Gualtar – gualtar, Braga, Portugal
| | - Nuno A. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar – gualtar, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Campus de Gualtar – gualtar, Braga, Portugal
| |
Collapse
|
2
|
Cardoso R, Cardoso FSDS, Ramalho BDS, Maria GDS, Cavalcanti RR, Taboada TB, de Almeida JS, Martinez AMB, de Almeida FM. Inosine Improves Functional Recovery and Cell Morphology Following Compressive Spinal Cord Injury in Mice. Neurotrauma Rep 2024; 5:957-968. [PMID: 39464528 PMCID: PMC11512092 DOI: 10.1089/neur.2024.0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Spinal cord injury (SCI) is one of the most serious conditions of the central nervous system, causing motor and sensory deficits that lead to a significant impairment in the quality of life. Previous studies have indicated that inosine can promote regeneration after SCI. Here we investigated the effects of inosine on the behavioral and morphological recovery after a compressive injury. Adult female C57BL/6 mice were subjected to laminectomy and spinal cord compression using a vascular clip. Inosine or saline injections were administered intraperitoneally, with the first dose performed 24 h after injury and daily for 7 days after injury. The mice were evaluated using Basso Mouse Scale (BMS), locomotor rating scale, and pinprick test for 8 weeks. At the end, the animals were anesthetized and euthanized, and the spinal cords were collected for morphological evaluation. Inosine-treated animals presented better results in the immunostaining for oligodendrocytes and in the number of myelinated fibers through semithin sections compared to saline-treated animals, showing that there was a greater preservation of the white matter. Analysis of the immunoreactivity of astrocytes and evaluation of the inflammatory profile with macrophage labeling revealed that the animals of the inosine group had a lower immunoreactivity when compared to control, which suggests a reduction of the glial scar and less inflammation, respectively, leading to a more favorable microenvironment for spinal cord regeneration. Indeed, inosine-treated animals scored higher on the BMS scale and presented better results on the pinprick test, indicating that the treatment contributed to motor and sensory recovery. After the animals were sacrificed, we obtained the electroneuromyography, where the inosine group showed a greater amplitude of the compound muscle action potential. These results indicate that inosine contributed to the regeneration process in the spinal cord of mice submitted to compressive injury and should be further investigated as a candidate for SCI therapy.
Collapse
Affiliation(s)
- Ricardo Cardoso
- Laboratório de Neurodegeneração e Reparo—Departamento de Anatomia, Patológica—Hospital Universitário Clementino Fraga Filho/UFRJ, Rio de Janeiro, Brazil
| | - Fellipe Soares dos Santos Cardoso
- Laboratório de Neurodegeneração e Reparo—Departamento de Anatomia, Patológica—Hospital Universitário Clementino Fraga Filho/UFRJ, Rio de Janeiro, Brazil
| | - Bruna dos Santos Ramalho
- Laboratório de Neurodegeneração e Reparo—Departamento de Anatomia, Patológica—Hospital Universitário Clementino Fraga Filho/UFRJ, Rio de Janeiro, Brazil
| | - Guilherme dos Santos Maria
- Laboratório de Neurodegeneração e Reparo—Departamento de Anatomia, Patológica—Hospital Universitário Clementino Fraga Filho/UFRJ, Rio de Janeiro, Brazil
| | - Roberta Ramos Cavalcanti
- Laboratório de Neurodegeneração e Reparo—Departamento de Anatomia, Patológica—Hospital Universitário Clementino Fraga Filho/UFRJ, Rio de Janeiro, Brazil
| | - Tiago Bastos Taboada
- Laboratório de Neurodegeneração e Reparo—Departamento de Anatomia, Patológica—Hospital Universitário Clementino Fraga Filho/UFRJ, Rio de Janeiro, Brazil
| | - Juliana Silva de Almeida
- Laboratório de Neurodegeneração e Reparo—Departamento de Anatomia, Patológica—Hospital Universitário Clementino Fraga Filho/UFRJ, Rio de Janeiro, Brazil
| | - Ana Maria Blanco Martinez
- Laboratório de Neurodegeneração e Reparo—Departamento de Anatomia, Patológica—Hospital Universitário Clementino Fraga Filho/UFRJ, Rio de Janeiro, Brazil
| | - Fernanda Martins de Almeida
- Laboratório de Neurodegeneração e Reparo—Departamento de Anatomia, Patológica—Hospital Universitário Clementino Fraga Filho/UFRJ, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas—ICB/UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Arriero-Cabañero A, García-Vences E, Sánchez-Torres S, Aristizabal-Hernandez S, García-Rama C, Pérez-Rizo E, Fernández-Mayoralas A, Grijalva I, Buzoianu-Anguiano V, Doncel-Pérez E, Mey J. Transplantation of Predegenerated Peripheral Nerves after Complete Spinal Cord Transection in Rats: Effect of Neural Precursor Cells and Pharmacological Treatment with the Sulfoglycolipid Tol-51. Cells 2024; 13:1324. [PMID: 39195214 PMCID: PMC11352494 DOI: 10.3390/cells13161324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Following spinal cord injury (SCI), the regenerative capacity of the central nervous system (CNS) is severely limited by the failure of axonal regeneration. The regeneration of CNS axons has been shown to occur by grafting predegenerated peripheral nerves (PPNs) and to be promoted by the transplantation of neural precursor cells (NPCs). The introduction of a combinatorial treatment of PPNs and NPCs after SCI has to address the additional problem of glial scar formation, which prevents regenerating axons from leaving the implant and making functional connections. Previously, we discovered that the synthetic sulfoglycolipid Tol-51 inhibits astrogliosis. The objective was to evaluate axonal regeneration and locomotor function improvement after SCI in rats treated with a combination of PPN, NPC, and Tol-51. One month after SCI, the scar tissue was removed and replaced with segments of PPN or PPN+Tol-51; PPN+NPC+Tol-51. The transplantation of a PPN segment favors regenerative axonal growth; in combination with Tol-51 and NPC, 30% of the labeled descending corticospinal axons were able to grow through the PPN and penetrate the caudal spinal cord. The animals treated with PPN showed significantly better motor function. Our data demonstrate that PPN implants plus NPC and Tol-51 allow successful axonal regeneration in the CNS.
Collapse
Affiliation(s)
- Alejandro Arriero-Cabañero
- Laboratorio de Regeneración Neural, Hospital Nacional de Parapléjicos, 45071 Toledo, Spain; (A.A.-C.); (S.A.-H.); (C.G.-R.); (J.M.)
| | - Elisa García-Vences
- Facultad de Ciencias de la Salud, Centro de Investigación en Ciencias de la Salud (CICSA), Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico;
- Secretaría de la Defensa Nacional, Escuela Militar de Graduados en Sanidad, Ciudad de Méxcio 11200, Mexico
| | - Stephanie Sánchez-Torres
- Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI. Av. Cuauhtémoc 330, Col. Doctores, Mexico City 06720, Mexico; (S.S.-T.); (I.G.)
| | - Sergio Aristizabal-Hernandez
- Laboratorio de Regeneración Neural, Hospital Nacional de Parapléjicos, 45071 Toledo, Spain; (A.A.-C.); (S.A.-H.); (C.G.-R.); (J.M.)
| | - Concepción García-Rama
- Laboratorio de Regeneración Neural, Hospital Nacional de Parapléjicos, 45071 Toledo, Spain; (A.A.-C.); (S.A.-H.); (C.G.-R.); (J.M.)
| | - Enrique Pérez-Rizo
- Unidad de Ingeniería y Evaluación Motora del Hospital Nacional de Parapléjicos, 45071 Toledo, Spain;
| | | | - Israel Grijalva
- Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI. Av. Cuauhtémoc 330, Col. Doctores, Mexico City 06720, Mexico; (S.S.-T.); (I.G.)
| | - Vinnitsa Buzoianu-Anguiano
- Laboratorio de Regeneración Neural, Hospital Nacional de Parapléjicos, 45071 Toledo, Spain; (A.A.-C.); (S.A.-H.); (C.G.-R.); (J.M.)
| | - Ernesto Doncel-Pérez
- Laboratorio de Regeneración Neural, Hospital Nacional de Parapléjicos, 45071 Toledo, Spain; (A.A.-C.); (S.A.-H.); (C.G.-R.); (J.M.)
| | - Jörg Mey
- Laboratorio de Regeneración Neural, Hospital Nacional de Parapléjicos, 45071 Toledo, Spain; (A.A.-C.); (S.A.-H.); (C.G.-R.); (J.M.)
- EURON Graduate School of Neuroscience, 6229ER Maastricht, The Netherlands
| |
Collapse
|
4
|
Liu J, Yan R, Wang B, Chen S, Hong H, Liu C, Chen X. Decellularized extracellular matrix enriched with GDNF enhances neurogenesis and remyelination for improved motor recovery after spinal cord injury. Acta Biomater 2024; 180:308-322. [PMID: 38615813 DOI: 10.1016/j.actbio.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Motor functional improvement represents a paramount treatment objective in the post-spinal cord injury (SCI) recovery process. However, neuronal cell death and axonal degeneration following SCI disrupt neural signaling, impeding the motor functional recovery. In this study, we developed a multifunctional decellularized spinal cord-derived extracellular matrix (dSECM), crosslinked with glial cell-derived neurotrophic factor (GDNF), to promote differentiation of stem cells into neural-like cells and facilitate axonogenesis and remyelination. After decellularization, the immunogenic cellular components were effectively removed in dSECM, while the crucial protein components were retained which supports stem cells proliferation and differentiation. Furthermore, sustained release of GDNF from the dSECM facilitated axonogenesis and remyelination by activating the PI3K/Akt and MEK/Erk pathways. Our findings demonstrate that the dSECM-GDNF platform promotes neurogenesis, axonogenesis, and remyelination to enhance neural signaling, thereby yielding promising therapeutic effects for motor functional improvement after SCI. STATEMENT OF SIGNIFICANCE: The dSECM promotes the proliferation and differentiation of MSCs or NSCs by retaining proteins associated with positive regulation of neurogenesis and neuronal differentiation, while eliminating proteins related to negative regulation of neurogenesis. After crosslinking, GDNF can be gradually released from the platform, thereby promoting neural differentiation, axonogenesis, and remyelination to enhance neural signaling through activation of the PI3K/Akt and MEK/Erk pathways. In vivo experiments demonstrated that dSECM-GDNF/MSC@GelMA hydrogel exhibited the ability to facilitate neuronal regeneration at 4 weeks post-surgery, while promoting axonogenesis and remyelination at 8 weeks post-surgery, ultimately leading to enhanced motor functional recovery. This study elucidates the ability of neural regeneration strategy to promote motor functional recovery and provides a promising approach for designing multifunctional tissue for SCI treatment.
Collapse
Affiliation(s)
- Jiashang Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Ruijia Yan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Bixue Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Shu Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Hua Hong
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Xi Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
5
|
Chen X, Liu Y, Stavrinou P, Stavrinou L, Hu W, Goldbrunner R, Zheng F, He H. Spinal cord injury: Olfactory ensheathing cell-based therapeutic strategies. J Neurosci Res 2024; 102:e25283. [PMID: 38284859 DOI: 10.1002/jnr.25283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/22/2023] [Accepted: 11/16/2023] [Indexed: 01/30/2024]
Abstract
Spinal cord injury (SCI) is a highly disabling neurological disorder that is difficult to treat due to its complex pathophysiology and nerve regeneration difficulties. Hence, effective SCI treatments are necessary. Olfactory ensheathing cells (OECs), glial cells derived from the olfactory bulb or mucosa, are ideal candidates for SCI treatment because of their neuroprotective and regenerative properties, ample supply, and convenience. In vitro, animal model, and human trial studies have reported discoveries on OEC transplantation; however, shortcomings have also been demonstrated. Recent studies have optimized various OEC transplantation strategies, including drug integration, biomaterials, and gene editing. This review aims to introduce OECs mechanisms in repairing SCI, summarize the research progress of OEC transplantation-optimized strategies, and provide novel research ideas for SCI treatment.
Collapse
Affiliation(s)
- Xinli Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yibin Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Pantelis Stavrinou
- Department of Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
- Neurosurgery, Metropolitan Hospital, Athens, Greece
| | - Lampis Stavrinou
- 2nd Department of Neurosurgery, "Attikon" University Hospital, National and Kapodistrian University, Athens Medical School, Athens, Greece
| | - Weipeng Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Roland Goldbrunner
- Department of Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Feng Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Hefan He
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
6
|
Tseng YT, Lai R, Oieni F, Standke A, Smyth G, Yang C, Chen M, St John J, Ekberg J. Liraglutide modulates adhesion molecules and enhances cell properties in three-dimensional cultures of olfactory ensheathing cells. Biomed Pharmacother 2023; 165:115084. [PMID: 37399717 DOI: 10.1016/j.biopha.2023.115084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023] Open
Abstract
Cell transplantation using olfactory ensheathing cells (OECs) is a promising approach for nerve repair but there are numerous limitations with their delivery method. Three-dimensional (3D) cell culture systems potentially offer a powerful approach for cell production and delivery options. To further optimise the use of OECs, strategies to promote cell viability and maintain cell behaviours in 3D cultures become important. We previously demonstrated an anti-diabetic drug, liraglutide, could modulate OEC migration and re-model extracellular matrix in two-dimensional (2D) cultures. In the present study, we further investigated its beneficial effects in our 3D culture system using primary OECs. OECs treated with liraglutide at 100 nM showed improved cell viability and had modulated expression of N-cadherin and β1-integrin (two important cell adhesion molecules). When formed into 3D spheroids, the pre-treated OECs generated spheroids with an increased volume and a decreased cell density compared to control spheroids. OECs that subsequently migrated out of the liraglutide pre-treated spheroids had higher capacity for migration with increased duration and length, which was attributed to a reduction in the pauses during the migration. Moreover, OECs that migrated out from liraglutide spheroids had a more bipolar morphology consistent with higher migratory capacity. In summary, liraglutide improved the viability of OECs, modulated cell adhesion molecules, and resulted in stable 3D cell constructs which conferred enhanced migratory capacity on the OECs. Overall, liraglutide may potentially improve the therapeutic use of OECs for neural repair by enhancing the generation of stable 3D constructs and increasing the migratory behaviour of OECs.
Collapse
Affiliation(s)
- Yu-Ting Tseng
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia; Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia; Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Richard Lai
- Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia
| | - Francesca Oieni
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia; Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia
| | - Andrea Standke
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia; Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia
| | - Graham Smyth
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia; Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia
| | - Chenying Yang
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia; Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia
| | - Mo Chen
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia; Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia; Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| | - James St John
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia; Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia; Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| | - Jenny Ekberg
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia; Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia; Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| |
Collapse
|
7
|
Zhao M, Li J, Gao Z, Guo D, Yang Y, Wang F, Wang L, Yang Y, He X, Li H, Chang S. miR-145a-5p/Plexin-A2 promotes the migration of OECs and transplantation of miR-145a-5p engineered OECs promotes the functional recovery in rats with SCI. Neurobiol Dis 2023; 182:106129. [PMID: 37068642 DOI: 10.1016/j.nbd.2023.106129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Olfactory ensheathing cells (OECs) serve as a bridge by migrating at the site of spinal cord injury (SCI) to facilitate the repair of the neural structure and neural function. However, OEC migration at the injury site not only faces the complex and disordered internal environment but also is closely associated with the migration ability of OECs. METHODS We extracted OECs from the olfactory bulb of SD rats aged <7 days old. We verified the micro ribonucleic acid (miR)-145a-5p expression level in the gene chip after SCI and OEC transplantation using quantitative reverse transcription (qRT)-polymerase chain reaction (PCR). The possible target gene Plexin-A2 of miR-145a-5p was screened using bioinformatics and was verified using dual-luciferase reporter assay, Western blot, and qRT-PCR. The effect of miR-145a-5p/plexin-A2 on OEC migration ability was verified by wound healing assay, Transwell cell migration assay, and immunohistochemistry. Nerve regeneration was observed at the injured site of the spinal cord after OEC transplantation using tissue immunofluorescence and magnetic resonance imaging, diffusion tensor imaging, and the Basso-Beattie-Bresnahan locomotor rating scale were further used for imaging and functional evaluation. RESULTS miR-145a-5p expression in the injured spinal cord tissue after SCI considerably decreased, while Plexin-A2 expression significantly increased. OEC transplantation can reverse miR-145a-5p and Plexin-A2 expression after SCI. miR-145a-5p overexpression enhanced the intrinsic migration ability of OECs. As a target gene of miR-145a-5p, Plexin-A2 hinders OEC migration. OEC transplantation overexpressing miR-145a-5p after SCI can increase miR-145a-5p levels in the spinal cord, reduce Plexin-A2 expression in the OECs and the spinal cord tissue, and promote OEC migration and distribution at the injured site. OEC transplantation overexpressing miR-145a-5p can promote the regeneration and repair of neural morphology and neural function. CONCLUSIONS Our study demonstrated that miR-145a-5p could promote OEC migration to the injured spinal cord after cell transplantation by down-regulating the target gene Plexin-A2, thereby repairing the neural structure and function after SCI in rats.
Collapse
Affiliation(s)
- MinChao Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China
| | - Jiaxi Li
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China
| | - Zhengchao Gao
- Department of Orthopaedics, Shaanxi Provincial People's Hospital, 256 Youyi West Road, Xi'an 710068, Shaanxi, China
| | - Dong Guo
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China
| | - Yubing Yang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China
| | - Fang Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China
| | - Lumin Wang
- Gastroenterology department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710100, China
| | - Yang Yang
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xijing He
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China; Department of Orthopaedics, Xi'an International Medical Center Hospital, Xi'an, Shaanxi 710100, China
| | - Haopeng Li
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China.
| | - Su'e Chang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China.
| |
Collapse
|
8
|
Liu JP, Wang JL, Hu BE, Zou FL, Wu CL, Shen J, Zhang WJ. Olfactory ensheathing cells and neuropathic pain. Front Cell Dev Biol 2023; 11:1147242. [PMID: 37223000 PMCID: PMC10201020 DOI: 10.3389/fcell.2023.1147242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/27/2023] [Indexed: 08/29/2023] Open
Abstract
Damage to the nervous system can lead to functional impairment, including sensory and motor functions. Importantly, neuropathic pain (NPP) can be induced after nerve injury, which seriously affects the quality of life of patients. Therefore, the repair of nerve damage and the treatment of pain are particularly important. However, the current treatment of NPP is very weak, which promotes researchers to find new methods and directions for treatment. Recently, cell transplantation technology has received great attention and has become a hot spot for the treatment of nerve injury and pain. Olfactory ensheathing cells (OECs) are a kind of glial cells with the characteristics of lifelong survival in the nervous system and continuous division and renewal. They also secrete a variety of neurotrophic factors, bridge the fibers at both ends of the injured nerve, change the local injury microenvironment, and promote axon regeneration and other biological functions. Different studies have revealed that the transplantation of OECs can repair damaged nerves and exert analgesic effect. Some progress has been made in the effect of OECs transplantation in inhibiting NPP. Therefore, in this paper, we provided a comprehensive overview of the biology of OECs, described the possible pathogenesis of NPP. Moreover, we discussed on the therapeutic effect of OECs transplantation on central nervous system injury and NPP, and prospected some possible problems of OECs transplantation as pain treatment. To provide some valuable information for the treatment of pain by OECs transplantation in the future.
Collapse
Affiliation(s)
- Ji-peng Liu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Jia-ling Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Bai-er Hu
- Department of Physical Examination, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Fei-long Zou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Chang-lei Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Jie Shen
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Wen-jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
9
|
Li S, Wu P, Ji Z, Zhang Y, Zhang P, He Y, Shen Y. In vitro biocompatibility study of EDC/NHS cross-linked silk fibroin scaffold with olfactory ensheathing cells. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:482-496. [PMID: 36285432 DOI: 10.1080/09205063.2022.2135076] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In this paper, we investigated silk fibroin (SF) cross-linked by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) and its biocompatibility with olfactory ensheathing cells (OECs). After cross-linked with different concentrations of EDC/NHS solutions, SF scaffolds were analyzed by different techniques such as scanning electron microscopy, Fourier transform infrared spectra, x-ray diffraction, tensile machine and water contact angle assay. As to their structures, we found 4.5% EDC/NHS cross-linked SF possessed a more significant increase of β-sheet and a decrease of α-helix than 1.5% group. These changes helped SF achieve excellent mechanical properties. While more remarkable improvement of hydrophilicity was seen in 1.5% EDC/NHS treated SF. Immunofluorescence, MTT, Annexin-V/PI and ELISA analysis were then conducted to determine the states and functions of OECs on the scaffolds. OECs on 4.5% EDC/NHS cross-linked SF seemed insufficient to spread, and the proliferation was limited on 4 and 6 days. Moreover, 4.5% EDC/NHS exerted adverse effects on cell survival and nerve growth factor (NGF) secretion at day 4, but not 1.5% EDC/NHS. Taken together, SF scaffolds showed improved physical and hydrophilic properties through cross-linking. 1.5% EDC/NHS cross-linked SF scaffolds showed significant advantages between mechanical property and the states and functions with OECs, which has the potential to be used for neural repairing.
Collapse
Affiliation(s)
- Shengwen Li
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Second Department of Orthopaedics, Haining People's Hospital, Haining, Zhejiang, China
| | - Peng Wu
- Department of Orthopedics, The Second Hospital of Jingzhou, Jingzhou, Hubei, China
| | - Zhongqing Ji
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of Orthopedics, Yongding Hospital, Suzhou, Jiangsu, China
| | - Yu Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Peng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yongqing He
- Second Department of Orthopaedics, Haining People's Hospital, Haining, Zhejiang, China
| | - Yixin Shen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
10
|
Pourkhodadad S, Hosseinkazemi H, Bonakdar S, Nekounam H. Biomimetic engineered approaches for neural tissue engineering: Spinal cord injury. J Biomed Mater Res B Appl Biomater 2023; 111:701-716. [PMID: 36214332 DOI: 10.1002/jbm.b.35171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/16/2022] [Accepted: 09/03/2022] [Indexed: 01/21/2023]
Abstract
The healing process for spinal cord injuries is complex and presents many challenges. Current advances in nerve regeneration are based on promising tissue engineering techniques, However, the chances of success depend on better mimicking the extracellular matrix (ECM) of neural tissue and better supporting neurons in a three-dimensional environment. The ECM provides excellent biological conditions, including desirable morphological features, electrical conductivity, and chemical compositions for neuron attachment, proliferation and function. This review outlines the rationale for developing a construct for neuron regrowth in spinal cord injury using appropriate biomaterials and scaffolding techniques.
Collapse
Affiliation(s)
| | - Hessam Hosseinkazemi
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Houra Nekounam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Murtaza M, Mohanty L, Ekberg JAK, St John JA. Designing Olfactory Ensheathing Cell Transplantation Therapies: Influence of Cell Microenvironment. Cell Transplant 2022; 31:9636897221125685. [PMID: 36124646 PMCID: PMC9490465 DOI: 10.1177/09636897221125685] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Olfactory ensheathing cell (OEC) transplantation is emerging as a promising treatment option for injuries of the nervous system. OECs can be obtained relatively easily from nasal biopsies, and exhibit several properties such as secretion of trophic factors, and phagocytosis of debris that facilitate neural regeneration and repair. But a major limitation of OEC-based cell therapies is the poor survival of transplanted cells which subsequently limit their therapeutic efficacy. There is an unmet need for approaches that enable the in vitro production of OECs in a state that will optimize their survival and integration after transplantation into the hostile injury site. Here, we present an overview of the strategies to modulate OECs focusing on oxygen levels, stimulating migratory, phagocytic, and secretory properties, and on bioengineering a suitable environment in vitro.
Collapse
Affiliation(s)
- Mariyam Murtaza
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
| | - Lipsa Mohanty
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
| | - Jenny A K Ekberg
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
| | - James A St John
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
| |
Collapse
|
12
|
Human umbilical cord mesenchymal stem cells-derived extracellular vesicles facilitate the repair of spinal cord injury via the miR-29b-3p/PTEN/Akt/mTOR axis. Cell Death Discov 2021; 7:212. [PMID: 34381025 PMCID: PMC8357833 DOI: 10.1038/s41420-021-00572-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/15/2021] [Accepted: 07/07/2021] [Indexed: 01/08/2023] Open
Abstract
Spinal cord injury (SCI) is a salient traumatic disease that often leads to permanent disability, and motor and sensory impairments. Human umbilical cord mesenchymal stem cells (HucMSCs) have a wide application prospect in the treatment of SCI. This study explored the repair effect of HucMSCs-derived extracellular vesicles (HucMSCs-EVs) on SCI. HucMSCs and HucMSCs-EVs were cultured and identified. The rat model of SCI was established, and SCI rats were treated with HucMSCs-EVs. The motor function of SCI rats and morphology of spinal cord tissues were evaluated. Levels of NeuN, GFAP, and NF200 in spinal cord tissues were detected and cell apoptosis was measured. SCI rats were treated with EVs extracted from miR-29b-3p inhibitor-transfected HucMSCs. The downstream gene and pathway of miR-29b-3p were examined. HucMSCs-EVs-treated rats showed obvious motor function recovery and reduced necrosis, nuclear pyknosis, and cavity. HucMSCs-EVs alleviated spinal cord neuronal injury. miR-29b-3p was poorly expressed in SCI tissues, but highly expressed in EVs and SCI rats treated with EVs. miR-29b-3p targeted PTEN. Inhibition of miR-29b-3p or overexpression of PTEN reversed the repair effect of EVs on SCI. EVs activated the AKT/mTOR pathway via the miR-29b-3p/PTEN. In conclusion, HucMSCs-EVs reduced pathological changes, improved motor function, and promoted nerve function repair in SCI rats via the miR-29b-3p/PTEN/Akt/mTOR axis.
Collapse
|
13
|
Wang H, Yuan J, Dang X, Shi Z, Ban W, Ma D. Mettl14-mediated m6A modification modulates neuron apoptosis during the repair of spinal cord injury by regulating the transformation from pri-mir-375 to miR-375. Cell Biosci 2021; 11:52. [PMID: 33706799 PMCID: PMC7953660 DOI: 10.1186/s13578-020-00526-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a disabling disorder, resulting in neurological impairments. This study investigated the mechanism of methyltransferase-like 14 (Mettl14) on apoptosis of spinal cord neurons during SCI repair by mediating pri-microRNA (miR) dependent N6-methyladenosine (m6A) methylation. METHODS The m6A content in total RNA and Mettl14 levels in spinal cord tissues of SCI rats were detected. Mettl14 expression was intervened in SCI rats to examine motor function, neuron apoptosis, and recovery of neurites. The cell model of SCI was established and intervened with Mettl14. miR-375, related to SCI and positively related to Mettl14, was screened out. The expression of miR-375 and pri-miR-375 after Mettl14 intervention was detected. The expression of pri-miR-375 combined with DiGeorge critical region 8 (DGCR8) and that modified by m6A was detected. Furthermore, the possible downstream gene and pathway of miR-375 were analysed. SCI cell model with Mettl14 intervention was combined with Ras-related dexamethasone-induced 1 (RASD1)/miR-375 intervention to observe the apoptosis. RESULTS Mettl14 level and m6A content in spinal cord tissue were significantly increased. After Mettl14 knockdown, the injured motor function was restored and neuron apoptosis was reduced. In vitro, Mettl14 silencing reduced the apoptosis of SCI cells; miR-375 was reduced and pri-miR-375 was increased; miR-375 targeted RASD1. Silencing Mettl14 inactivated the mTOR pathway. The apoptosis in cells treated with silencing Mettl14 + RASD1/miR-375 was inhibited. CONCLUSIONS Mettl14-mediated m6A modification inhibited RASD1 and induced the apoptosis of spinal cord neurons in SCI by promoting the transformation of pri-miR-375 to mature miR-375.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Orthopedics, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, Shanxi, People's Republic of China
| | - Jing Yuan
- Xi'an Radio and Television University, Xi'an, 710002, Shanxi, People's Republic of China
| | - Xiaoqian Dang
- Department of Orthopedics, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, Shanxi, People's Republic of China
| | - Zhibin Shi
- Department of Orthopedics, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, Shanxi, People's Republic of China
| | - Wenrui Ban
- Department of Orthopedics, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, Shanxi, People's Republic of China
| | - Dong Ma
- Key Laboratory of Shanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|