1
|
Mai TP, Park JB, Nguyen HD, Min KA, Moon C. Current application of dexamethasone-incorporated drug delivery systems for enhancing bone formation. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2023; 53:643-665. [DOI: 10.1007/s40005-023-00629-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/31/2023] [Indexed: 03/10/2025]
|
2
|
Li M, Yin S, Lin M, Chen X, Pan Y, Peng Y, Sun J, Kumar A, Liu J. Current status and prospects of metal-organic frameworks for bone therapy and bone repair. J Mater Chem B 2022; 10:5105-5128. [PMID: 35766423 DOI: 10.1039/d2tb00742h] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the development of society, traumatic bone defects caused by accidents, diseases and surgeries have become common, eventually resulting in an increase in bone defects. The treatment of bone defects is characterized by a long period of treatment, high cost and uncontrollable outcomes. Also, it results in complications such as infection and bone discontinuity. Hence, due to this situation, the physical, mental and financial aspects of the patient are severely affected. What's more, such outcomes pose a challenge to orthopaedic surgeons. As a result, bone therapy and bone repair have become a hot topic of interest. In repairing bone defects, materials other than autogenous bone are still unable to provide good biocompatibility, osteogenesis, osteoconductivity and osteoinduction properties at the same time. In addition, the scarcity of autologous bone sources has forced the search for new autologous bone replacement materials. Metal organic frameworks (MOFs) are a new class of developed functional materials that have been widely used in the biomedical field during the recent years due to their porous nature, large specific surface area and diverse structures. With the progress in the investigation into bone treatment and repair, more and more investigators are using MOFs in bone therapy and bone repair. With these viewpoints, in the present perspective, the use of MOFs in bone therapy and bone repair has been summarized, and an insight into the future of MOFs in bone therapy and bone repair has been provided.
Collapse
Affiliation(s)
- Minmin Li
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China. .,Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Shihai Yin
- Hand Surgery Department, Liaobu Hospital of Guangdong Medical University, Dongguan, China
| | - Mingzi Lin
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Xuelin Chen
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Ying Pan
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Yanqiong Peng
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.
| | - Jianbo Sun
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.
| | - Abhinav Kumar
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India.
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China. .,Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| |
Collapse
|
3
|
Munir MU, Salman S, Ihsan A, Elsaman T. Synthesis, Characterization, Functionalization and Bio-Applications of Hydroxyapatite Nanomaterials: An Overview. Int J Nanomedicine 2022; 17:1903-1925. [PMID: 35530974 PMCID: PMC9075913 DOI: 10.2147/ijn.s360670] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/12/2022] [Indexed: 01/12/2023] Open
Abstract
Hydroxyapatite (HA) is similar to natural bone regarding composition, and its structure favors in biomedical applications. Continuous research and progress on HA nanomaterials (HA-NMs) have explored novel fabrication approaches coupled with functionalization and characterization methods. These nanomaterials have a significant role in many biomedical areas like sustained drug and gene delivery, bio-imaging, magnetic resonance, cell separation, and hyperthermia treatment due to their promising biocompatibility. This review highlighted the HA-NMs chemical composition, recent progress in synthesis methods, characterization and surface modification methods, ion-doping, and role in biomedical applications. HA-NMs have a substantial role as drug delivery vehicles, coating material, bone implant, coating, ceramic, and composite materials. Here, we try to summarize an overview of HA-NMs with the provision of future directions.
Collapse
Affiliation(s)
- Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72388, Saudi Arabia
| | - Sajal Salman
- Faculty of Pharmacy, University of Central Punjab, Lahore, 54000, Pakistan
| | - Ayehsa Ihsan
- Nanobiotech Group, Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Tilal Elsaman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72388, Saudi Arabia
| |
Collapse
|
4
|
Rajesh K, Ghosh S, Islam A, Rangaswamy MK, Haldar S, Roy P, Keshri AK, Lahiri D. Multilayered porous hydroxyapatite coating on Ti6Al4V implant with enhanced drug delivery and antimicrobial properties. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
AbouAitah K, Bil M, Pietrzykowska E, Szałaj U, Fudala D, Woźniak B, Nasiłowska J, Swiderska-Sroda A, Lojkowski M, Sokołowska B, Swieszkowski W, Lojkowski W. Drug-Releasing Antibacterial Coating Made from Nano-Hydroxyapatite Using the Sonocoating Method. NANOMATERIALS 2021; 11:nano11071690. [PMID: 34203218 PMCID: PMC8307745 DOI: 10.3390/nano11071690] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022]
Abstract
Medical implant use is associated with a risk of infection caused by bacteria on their surface. Implants with a surface that has both bone growth-promoting properties and antibacterial properties are of interest in orthopedics. In the current study, we fabricated a bioactive coating of hydroxyapatite nanoparticles on polyether ether ketone (PEEK) using the sonocoating method. The sonocoating method creates a layer by immersing the object in a suspension of nanoparticles in water and applying a high-power ultrasound. We show that the simple layer fabrication method results in a well-adhering layer with a thickness of 219 nm to 764 nm. Dropping cefuroxime sodium salt (Cef) antibiotic on the coated substrate creates a layer with a drug release effect and antibacterial activity against Staphylococcus aureus. We achieved a concentration of up to 1 mg of drug per cm2 of the coated substrate. In drug release tests, an initial burst was observed within 24 h, accompanied by a linear stable release effect. The drug-loaded implants exhibited sufficient activity against S. aureus for 24 and 168 h. Thus, the simple method we present here produces a biocompatible coating that can be soaked with antibiotics for antibacterial properties and can be used for a range of medical implants.
Collapse
Affiliation(s)
- Khaled AbouAitah
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, 29/37 Sokolowska Street, 01142 Warsaw, Poland; (E.P.); (U.S.); (D.F.); (B.W.); (A.S.-S.)
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Dokki, Giza 12622, Egypt
- Correspondence: (K.A.); (W.L.); Tel.: +48-22-6325010 (W.L.); Fax: +48-22-632-4218 (W.L.)
| | - Monika Bil
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02822 Warsaw, Poland;
| | - Elzbieta Pietrzykowska
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, 29/37 Sokolowska Street, 01142 Warsaw, Poland; (E.P.); (U.S.); (D.F.); (B.W.); (A.S.-S.)
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Street, 02507 Warsaw, Poland; (M.L.); (W.S.)
| | - Urszula Szałaj
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, 29/37 Sokolowska Street, 01142 Warsaw, Poland; (E.P.); (U.S.); (D.F.); (B.W.); (A.S.-S.)
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Street, 02507 Warsaw, Poland; (M.L.); (W.S.)
| | - Damian Fudala
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, 29/37 Sokolowska Street, 01142 Warsaw, Poland; (E.P.); (U.S.); (D.F.); (B.W.); (A.S.-S.)
| | - Bartosz Woźniak
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, 29/37 Sokolowska Street, 01142 Warsaw, Poland; (E.P.); (U.S.); (D.F.); (B.W.); (A.S.-S.)
| | - Justyna Nasiłowska
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agriculture and Food Biotechnology–State Research Institute, 36 Rakowiecka Street, 02532 Warsaw, Poland; (J.N.); (B.S.)
- High Pressure Food and Soft Matter Processing Group, Institute of High-Pressure Physics, Polish Academy of Sciences, 29/37 Sokołowska Street, 01142 Warsaw, Poland
| | - Anna Swiderska-Sroda
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, 29/37 Sokolowska Street, 01142 Warsaw, Poland; (E.P.); (U.S.); (D.F.); (B.W.); (A.S.-S.)
| | - Maciej Lojkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Street, 02507 Warsaw, Poland; (M.L.); (W.S.)
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agriculture and Food Biotechnology–State Research Institute, 36 Rakowiecka Street, 02532 Warsaw, Poland; (J.N.); (B.S.)
- High Pressure Food and Soft Matter Processing Group, Institute of High-Pressure Physics, Polish Academy of Sciences, 29/37 Sokołowska Street, 01142 Warsaw, Poland
| | - Wojciech Swieszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Street, 02507 Warsaw, Poland; (M.L.); (W.S.)
| | - Witold Lojkowski
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, 29/37 Sokolowska Street, 01142 Warsaw, Poland; (E.P.); (U.S.); (D.F.); (B.W.); (A.S.-S.)
- Correspondence: (K.A.); (W.L.); Tel.: +48-22-6325010 (W.L.); Fax: +48-22-632-4218 (W.L.)
| |
Collapse
|
6
|
Barik A, Ray SK, Byram PK, Sinha R, Chakravorty N. Extensive early mineralization of pre-osteoblasts, inhibition of osteoclastogenesis and faster peri-implant bone healing in osteoporotic rat model: principle effectiveness of bone-specific delivery of Tibolone as evaluated in vitro and in vivo. ACTA ACUST UNITED AC 2020; 15:064102. [PMID: 33226007 DOI: 10.1088/1748-605x/abb12b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hydrophobic drug molecules pose a significant challenge in immobilization on super-hydrophobic metallic surfaces like conventional titanium implants. Pre-coating surface modifications may yield a better platform with improved wettability for such purposes. Such modifications, as depicted in this study, were hypothesized to provide the requisite roughness to assist deposition of polymers like silk fibroin (SF) as a drug-binding matrix in addition to significant improvement in early protein adsorption, which facilitates faster cellular adhesion and proliferation. A silk-based localized drug delivery module was developed on the titanium surface and tested for its surface roughness, wettability, biocompatibility and in vitro differentiation potential of cells cultured on the coated metallic surfaces with/without external supplementation of the active metabolite of Tibolone. Conditioning of the matrix-coated implants with osteogenic as well as osteoclastogenic media supplemented with Tibolone stimulated the expression of early osteogenic gene and calcium deposition in the extracellular matrix. Significant inhibition in resorptive activity was also observed in the presence of the drug. To assess the efficacy of localized delivery of Tibolone via topographically modified titanium implants for inducing early peri-implant bone formation, osteoporosis was artificially induced in rats subjected to bilateral ovariectomy and implants were placed thereafter. Bone-specific release of Tibolone through the biomimetic matrix in osteoporotic rats collectively indicated significant improvement in peri-implant bone growth after 2 and 4 weeks (p < 0.05 compared to dummy-coated implants). These findings demonstrate for the first time that Tibolone released from SF matrix-coated implants can accelerate the biological stability of bone fixtures.
Collapse
Affiliation(s)
- Anwesha Barik
- School of Medical science and Technology, IIT Kharagpur, Kharagpur, West Bengal Pin code-721302, India
| | | | | | | | | |
Collapse
|
7
|
Huo SC, Yue B. Approaches to promoting bone marrow mesenchymal stem cell osteogenesis on orthopedic implant surface. World J Stem Cells 2020; 12:545-561. [PMID: 32843913 PMCID: PMC7415248 DOI: 10.4252/wjsc.v12.i7.545] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/13/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) play a critical role in the osseointegration of bone and orthopedic implant. However, osseointegration between the Ti-based implants and the surrounding bone tissue must be improved due to titanium’s inherent defects. Surface modification stands out as a versatile technique to create instructive biomaterials that can actively direct stem cell fate. Here, we summarize the current approaches to promoting BMSC osteogenesis on the surface of titanium and its alloys. We will highlight the utilization of the unique properties of titanium and its alloys in promoting tissue regeneration, and discuss recent advances in understanding their role in regenerative medicine. We aim to provide a systematic and comprehensive review of approaches to promoting BMSC osteogenesis on the orthopedic implant surface.
Collapse
Affiliation(s)
- Shi-Cheng Huo
- Department of Bone and Joint Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
8
|
Wang D, Xiao D, Lu M, Liu Q, Xie T, Feng G, Weng J, Duan K. Immobilization of poly(lactide- co-glycolide) microspheres on bone implant materials for antibiotic release and the binding mechanisms. RSC Adv 2020; 10:7251-7258. [PMID: 35493869 PMCID: PMC9049854 DOI: 10.1039/c9ra08246h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/09/2020] [Indexed: 11/29/2022] Open
Abstract
Bone implants are susceptible to postoperative infections. Immobilization of antibiotic-loaded microparticles on implants is an effective approach to addressing this problem. Immobilization methods reported in earlier studies frequently used special or potentially harmful conditions. Therefore, the present study explored a new method to immobilize poly(lactide-co-glycolide) (PLGA) microspheres on bone implant materials. PLGA microspheres were prepared by an emulsion method using polyvinyl alcohol (PVA) as an emulsifier. The microspheres were immobilized on two commonly used orthopaedic biomaterials [hydroxyapatite-coated titanium (HA-Ti) and poly(methyl methacrylate) (PMMA)] by dispersing on the surface followed by vacuum drying. Microspheres were retained stably on both materials even after immersion in phosphate-buffered saline for 12 d. Pretreatment of microspheres with sodium borate (i.e., an eliminator of hydroxyl groups of PVA) substantially reduced their retention on HA-Ti, but only moderately reduced their retention on PMMA. This suggested that the binding of the residual PVA on the microspheres to the HA coating is the dominant contributor to their immobilization on HA-Ti, whereas other forces contributed substantially to their immobilization on PMMA. Microspheres containing ciprofloxacin (a water-soluble antibiotic) and triclosan (an oil-soluble antibiotic) were immobilized on HA-Ti and PMMA, respectively. They effectively killed adjacent bacteria. These results offer a simple and versatile method for immobilizing drug-release microspheres on some important bone implant surfaces.
Collapse
Affiliation(s)
- Dongwei Wang
- Collaborative Innovation Center of Tissue Repair Materials of Sichuan Province, College of Life Sciences, China West Normal University Nanchong Sichuan 637009 China
| | - Dongqin Xiao
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College Sichuan 637000 China
| | - Mengjie Lu
- Department of Pathology, Affiliated Hospital of Southwest Medical University Luzhou Sichuan 646000 China
| | - Qing Liu
- Key Laboratory of Advanced Technologies of Materials, School of Materials Science and Engineering, Southwest Jiaotong University Chengdu Sichuan 610031 China
| | - Tao Xie
- Key Laboratory of Advanced Technologies of Materials, School of Materials Science and Engineering, Southwest Jiaotong University Chengdu Sichuan 610031 China
| | - Gang Feng
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College Sichuan 637000 China
| | - Jie Weng
- Key Laboratory of Advanced Technologies of Materials, School of Materials Science and Engineering, Southwest Jiaotong University Chengdu Sichuan 610031 China
| | - Ke Duan
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University Luzhou Sichuan 646000 China
| |
Collapse
|
9
|
Spitters TW, Stamatialis D, Petit A, Leeuw MGD, Karperien M. In Vitro Evaluation of Small Molecule Delivery into Articular Cartilage: Effect of Synovial Clearance and Compressive Load. Assay Drug Dev Technol 2019; 17:191-200. [DOI: 10.1089/adt.2018.907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Tim W.G.M. Spitters
- Department of Developmental BioEngineering, MIRA Institute, University of Twente, Enschede, The Netherlands
| | - Dimitrios Stamatialis
- Biomaterials Science and Technology Group, MIRA Institute, University of Twente, Enschede, The Netherlands
| | | | | | - Marcel Karperien
- Department of Developmental BioEngineering, MIRA Institute, University of Twente, Enschede, The Netherlands
| |
Collapse
|
10
|
Barik A, Chakravorty N. Targeted Drug Delivery from Titanium Implants: A Review of Challenges and Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1251:1-17. [PMID: 31768968 DOI: 10.1007/5584_2019_447] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Titanium implants are considered the gold standard of treatment for dental and orthopedic applications. Biocompatibility, low elasticity, and corrosion resistance are some of the key properties of these metallic implants. Nonetheless, a long-term clinical failure of implants may occur due to inadequate osseointegration. Poor osseointegration induces mobility, inflammation, increased bone resorption, and osteolysis; hence, it may result in painful revision surgeries. Topographical modifications, improvement in hydrophilicity, and the development of controlled-release drug-loading systems have shown to improve cellular adhesion, proliferation, and differentiation. Surface modifications, along with drug coating, undoubtedly demonstrate better osseointegration, especially in challenged degenerative conditions, such as osteoporosis, osteoarthritis, and osteogenesis imperfecta. Anabolic bone-acting drugs, such as parathyroid hormone peptides, simvastatin, prostaglandin-EP4-receptor antagonist, vitamin D, strontium ranelate, and anti-catabolic bone-acting drugs, such as calcitonin, bisphosphonates, and selective estrogen receptor modulators, expedite the process of osseointegration. In addition, various proteins, peptides, and growth factors may accessorize the idea of localized therapy. Loading these substances on modified titanium surfaces is achieved commonly by mechanisms such as direct coating, adsorption, and incorporating in biodegradable polymers. The primary approach toward the optimum drug loading is a critical trade-off between factors preventing release of a drug immediately and those allowing slow and sustained release. Recent advances broaden the understanding of the efficacy of adsorption, hydrogel coating, and electrospinning layer-by-layer coating facilitated by differential charge on metallic surface. This review discusses the existing approaches and challenges for the development of stable and sustained drug delivery systems on titanium implants, which would promote faster and superior osseointegration.
Collapse
Affiliation(s)
- Anwesha Barik
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, Paschim Medinipur, West Bengal, India
| | - Nishant Chakravorty
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, Paschim Medinipur, West Bengal, India.
| |
Collapse
|
11
|
Zawisza K, Wiglusz RJ. Preferential site occupancy of Eu 3+ ions in strontium hydroxyapatite nanocrystalline - Sr 10(PO 4) 6(OH) 2 - structural and spectroscopic characterisation. Dalton Trans 2018; 46:3265-3275. [PMID: 28224162 DOI: 10.1039/c6dt04731a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Strontium hydroxyapatite (Sr10(PO4)6(OH)2) nanopowders doped with Eu3+ ions were synthesized via a microwave-stimulated hydrothermal method and were heat-treated in the temperature range of 450-650 °C for 3 h. The concentration of Eu3+ ions was set in the range of 0.5-5 mol% to investigate the site occupancy preference. The structural and morphological properties of the obtained samples were determined via XRD (X-ray powder diffraction) and TEM (transmission electron microscopy) techniques, as well as IR (infrared) and Raman spectroscopy. Nanoparticles were obtained in the range of 35-85 nm as a function of dopant concentration and sintering temperature. The luminescence properties of Eu3+ ion-doped Sr10(PO4)6(OH)2, depending on dopant concentration and sintering temperature, were investigated. The Eu3+ ion occupied one site (C3 (Sr1)) of Sr2+ cations in the Sr10(PO4)6(OH)2 matrix, providing only one emission site, as results from luminescence spectroscopy data confirmed by the Rietveld refinement. A weak broad emission was observed with a peak at about 425 nm, corresponding to the 4f65d1 → 4f7 (8S7/2) transition of Eu2+ ions. The simplified Judd-Ofelt (J-O) theory was performed and a detailed analysis in connection with observed structural and spectroscopic measurements was carried out and has been described herein.
Collapse
Affiliation(s)
- Katarzyna Zawisza
- Institute of Low Temperature and Structure Research, PAS, ul. Okolna 2, PL-50-422 Wroclaw, Poland.
| | - Rafal J Wiglusz
- Institute of Low Temperature and Structure Research, PAS, ul. Okolna 2, PL-50-422 Wroclaw, Poland.
| |
Collapse
|
12
|
De Leo V, Mattioli-Belmonte M, Cimmarusti MT, Panniello A, Dicarlo M, Milano F, Agostiano A, De Giglio E, Catucci L. Liposome-modified titanium surface: A strategy to locally deliver bioactive molecules. Colloids Surf B Biointerfaces 2017; 158:387-396. [DOI: 10.1016/j.colsurfb.2017.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/09/2017] [Accepted: 07/03/2017] [Indexed: 12/26/2022]
|
13
|
Jeon HS, Jung EH, Kang SM, Lee ES, Lee JW, Kim BI. Improving the efficacy of chlorhexidine-releasing elastomerics using a layer-by-layer coating technique. Dent Mater J 2017; 36:476-481. [PMID: 28420834 DOI: 10.4012/dmj.2016-337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aims of this study were to identify the optimal concentration of coated orthodontic elastomerics using a layer-by-layer technique that can release chlorhexidine (CHX) as an antimicrobial material, and to measure the physical properties and antimicrobial effects of the coated elastomerics. Ethyl cellulose (EC) was used as the polymer, and five study groups with various combinations of solvents (i.e., ethanol and dichloromethane [DCM]) were included. The coated elastomerics were evaluated with a spectrophotometer to confirm the release of CHX, and their surfaces were observed by SEM. The CHX+EC+DCM group sustained antimicrobial release for the longest period (168 h, p<0.001) and exhibited the largest antimicrobial effect in an inhibition zone test using S. mutans for 7 days (p<0.05). This group had most effective physical properties and antimicrobial effects of coated elastomerics produced using a layerby-layer technique, and so its composition should be considered for use in clinical applications in orthodontics.
Collapse
Affiliation(s)
- Hyun-Sun Jeon
- Department of Dental Hygiene, Yeoju Institute of Technology.,Department of Preventive Dentistry and Public Oral Health, Yonsei University College of Dentistry
| | - Eun-Ha Jung
- Department of Preventive Dentistry and Public Oral Health, Yonsei University College of Dentistry.,BK 21 PLUS Project, Yonsei University College of Dentistry
| | - Si-Mook Kang
- Department of Preventive Dentistry and Public Oral Health, Yonsei University College of Dentistry.,BK 21 PLUS Project, Yonsei University College of Dentistry
| | - Eun-Song Lee
- Department of Preventive Dentistry and Public Oral Health, Yonsei University College of Dentistry.,BK 21 PLUS Project, Yonsei University College of Dentistry
| | - Jeong-Woo Lee
- Department of Preventive Dentistry and Public Oral Health, Yonsei University College of Dentistry
| | - Baek-Il Kim
- Department of Preventive Dentistry and Public Oral Health, Yonsei University College of Dentistry.,BK 21 PLUS Project, Yonsei University College of Dentistry.,Oral Science Research Institute, Yonsei University College of Dentistry
| |
Collapse
|
14
|
Haider A, Haider S, Han SS, Kang IK. Recent advances in the synthesis, functionalization and biomedical applications of hydroxyapatite: a review. RSC Adv 2017. [DOI: 10.1039/c6ra26124h] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hydroxyapatite (HA) is a member of the Ca apatite family.
Collapse
Affiliation(s)
- Adnan Haider
- Department of Polymer Science and Engineering
- School of Applied Chemical Engineering
- Kyungpook National University
- Daegu 702-701
- Republic of Korea
| | - Sajjad Haider
- Department of Chemical Engineering
- College of Engineering
- King Saud University
- Riyadh 11421
- Saudi Arabia
| | - Sung Soo Han
- Biomaterials Lab
- Department of Nano, Medical & Polymer Materials
- College of Engineering
- Yeungnam University
- Gyeongsan
| | - Inn-Kyu Kang
- Department of Polymer Science and Engineering
- School of Applied Chemical Engineering
- Kyungpook National University
- Daegu 702-701
- Republic of Korea
| |
Collapse
|
15
|
Large-scale synthesis of water-soluble luminescent hydroxyapatite nanorods for security printing. J Colloid Interface Sci 2016; 468:300-306. [DOI: 10.1016/j.jcis.2016.01.078] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/28/2016] [Accepted: 01/30/2016] [Indexed: 11/21/2022]
|
16
|
Hu B, Zhao C, Jin X, Wang H, Xiong J, Tan J. Antagonistic effect in pickering emulsion stabilized by mixtures of hydroxyapatite nanoparticles and sodium oleate. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Ong SM, Biswas SK, Wong SC. MicroRNA-mediated immune modulation as a therapeutic strategy in host-implant integration. Adv Drug Deliv Rev 2015; 88:92-107. [PMID: 26024977 DOI: 10.1016/j.addr.2015.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 05/05/2015] [Accepted: 05/21/2015] [Indexed: 12/29/2022]
Abstract
The concept of implanting an artificial device into the human body was once the preserve of science fiction, yet this approach is now often used to replace lost or damaged biological structures in human patients. However, assimilation of medical devices into host tissues is a complex process, and successful implant integration into patients is far from certain. The body's immediate response to a foreign object is immune-mediated reaction, hence there has been extensive research into biomaterials that can reduce or even ablate anti-implant immune responses. There have also been attempts to embed or coat anti-inflammatory drugs and pro-regulatory molecules onto medical devices with the aim of preventing implant rejection by the host. In this review, we summarize the key immune mediators of medical implant reaction, and we evaluate the potential of microRNAs to regulate these processes to promote wound healing, and prolong host-implant integration.
Collapse
Affiliation(s)
- Siew-Min Ong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos Building, Level 4, Biopolis, Singapore 138648, Singapore
| | - Subhra K Biswas
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos Building, Level 4, Biopolis, Singapore 138648, Singapore
| | - Siew-Cheng Wong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos Building, Level 4, Biopolis, Singapore 138648, Singapore.
| |
Collapse
|
18
|
Hydrothermal synthesis of hydroxyapatite nanorods in the presence of sodium citrate and its aqueous colloidal stability evaluation in neutral pH. J Colloid Interface Sci 2015; 443:125-30. [DOI: 10.1016/j.jcis.2014.12.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 11/29/2014] [Accepted: 12/03/2014] [Indexed: 11/17/2022]
|
19
|
Díaz-Rodríguez P, Landin M. Controlled release of indomethacin from alginate–poloxamer–silicon carbide composites decrease in-vitro inflammation. Int J Pharm 2015; 480:92-100. [DOI: 10.1016/j.ijpharm.2015.01.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/13/2015] [Indexed: 12/28/2022]
|
20
|
Current Uses of Poly(lactic-co-glycolic acid) in the Dental Field: A Comprehensive Review. J CHEM-NY 2015. [DOI: 10.1155/2015/525832] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Poly(lactic-co-glycolic acid) or PLGA is a biodegradable polymer used in a wide range of medical applications. Specifically PLGA materials are also developed for the dental field in the form of scaffolds, films, membranes, microparticles, or nanoparticles. PLGA membranes have been studied with promising results, either alone or combined with other materials in bone healing procedures. PLGA scaffolds have been used to regenerate damaged tissues together with stem cell-based therapy. There is solid evidence that the development of PLGA microparticles and nanoparticles may be beneficial to a wide range of dental fields such as endodontic therapy, dental caries, dental surgery, dental implants, or periodontology. The aim of the current paper was to review the recent advances in PLGA materials and their potential uses in the dental field.
Collapse
|
21
|
JEON HS, CHOI CH, KANG SM, KWON HK, KIM BI. Chlorhexidine-releasing orthodontic elastomerics. Dent Mater J 2015; 34:321-6. [DOI: 10.4012/dmj.2014-216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Hyun-Sun JEON
- Department of Dental Hygiene, Yonsei University Wonju College of Medicine
- Department of Preventive Dentistry and Public Oral Health, Yonsei University College of Dentistry
| | - Choong-Ho CHOI
- Department of Preventive and Public Health Dentistry, Chonnam national University School of Dentistry
| | - Si-Mook KANG
- BK 21 Plus Project, Yonsei University College of Dentistry
- Department of Preventive Dentistry and Public Oral Health, Yonsei University College of Dentistry
| | - Ho-Keun KWON
- BK 21 Plus Project, Yonsei University College of Dentistry
- Department of Preventive Dentistry and Public Oral Health, Yonsei University College of Dentistry
| | - Baek-Il KIM
- Oral Science Research Institute, Yonsei University College of Dentistry
- BK 21 Plus Project, Yonsei University College of Dentistry
- Department of Preventive Dentistry and Public Oral Health, Yonsei University College of Dentistry
| |
Collapse
|
22
|
Thorfve A, Bergstrand A, Ekström K, Lindahl A, Thomsen P, Larsson A, Tengvall P. Gene expression profiling of peri-implant healing of PLGA-Li+ implants suggests an activated Wnt signaling pathway in vivo. PLoS One 2014; 9:e102597. [PMID: 25047349 PMCID: PMC4105622 DOI: 10.1371/journal.pone.0102597] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 06/20/2014] [Indexed: 01/09/2023] Open
Abstract
Bone development and regeneration is associated with the Wnt signaling pathway that, according to literature, can be modulated by lithium ions (Li+). The aim of this study was to evaluate the gene expression profile during peri-implant healing of poly(lactic-co-glycolic acid) (PLGA) implants with incorporated Li+, while PLGA without Li+ was used as control, and a special attention was then paid to the Wnt signaling pathway. The implants were inserted in rat tibia for 7 or 28 days and the gene expression profile was investigated using a genome-wide microarray analysis. The results were verified by qPCR and immunohistochemistry. Histomorphometry was used to evaluate the possible effect of Li+ on bone regeneration. The microarray analysis revealed a large number of significantly differentially regulated genes over time within the two implant groups. The Wnt signaling pathway was significantly affected by Li+, with approximately 34% of all Wnt-related markers regulated over time, compared to 22% for non-Li+ containing (control; Ctrl) implants. Functional cluster analysis indicated skeletal system morphogenesis, cartilage development and condensation as related to Li+. The downstream Wnt target gene, FOSL1, and the extracellular protein-encoding gene, ASPN, were significantly upregulated by Li+ compared with Ctrl. The presence of β-catenin, FOSL1 and ASPN positive cells was confirmed around implants of both groups. Interestingly, a significantly reduced bone area was observed over time around both implant groups. The presence of periostin and calcitonin receptor-positive cells was observed at both time points. This study is to the best of the authors' knowledge the first report evaluating the effect of a local release of Li+ from PLGA at the fracture site. The present study shows that during the current time frame and with the present dose of Li+ in PLGA implants, Li+ is not an enhancer of early bone growth, although it affects the Wnt signaling pathway.
Collapse
Affiliation(s)
- Anna Thorfve
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - Anna Bergstrand
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- SuMo BIOMATERIALS VINN Excellence Center, Gothenburg, Sweden
- Stiftelsen Chalmers Industriteknik, Chalmers Teknikpark, Gothenburg, Sweden
| | - Karin Ekström
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - Anders Lindahl
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - Anette Larsson
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- SuMo BIOMATERIALS VINN Excellence Center, Gothenburg, Sweden
| | - Pentti Tengvall
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| |
Collapse
|
23
|
Surmenev RA, Surmeneva MA, Ivanova AA. Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis--a review. Acta Biomater 2014; 10:557-79. [PMID: 24211734 DOI: 10.1016/j.actbio.2013.10.036] [Citation(s) in RCA: 325] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/25/2013] [Accepted: 10/29/2013] [Indexed: 12/15/2022]
Abstract
A systematic analysis of results available from in vitro, in vivo and clinical trials on the effects of biocompatible calcium phosphate (CaP) coatings is presented. An overview of the most frequently used methods to prepare CaP-based coatings was conducted. Dense, homogeneous, highly adherent and biocompatible CaP or hybrid organic/inorganic CaP coatings with tailored properties can be deposited. It has been demonstrated that CaP coatings have a significant effect on the bone regeneration process. In vitro experiments using different cells (e.g. SaOS-2, human mesenchymal stem cells and osteoblast-like cells) have revealed that CaP coatings enhance cellular adhesion, proliferation and differentiation to promote bone regeneration. However, in vivo, the exact mechanism of osteogenesis in response to CaP coatings is unclear; indeed, there are conflicting reports of the effectiveness of CaP coatings, with results ranging from highly effective to no significant or even negative effects. This review therefore highlights progress in CaP coatings for orthopaedic implants and discusses the future research and use of these devices. Currently, an exciting area of research is in bioactive hybrid composite CaP-based coatings containing both inorganic (CaP coating) and organic (collagen, bone morphogenetic proteins, arginylglycylaspartic acid etc.) components with the aim of promoting tissue ingrowth and vascularization. Further investigations are necessary to reveal the relative influences of implant design, surgical procedure, and coating characteristics (thickness, structure, topography, porosity, wettability etc.) on the long-term clinical effects of hybrid CaP coatings. In addition to commercially available plasma spraying, other effective routes for the fabrication of hybrid CaP coatings for clinical use still need to be determined and current progress is discussed.
Collapse
Affiliation(s)
- Roman A Surmenev
- Department of Theoretical and Experimental Physics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart, Germany.
| | - Maria A Surmeneva
- Department of Theoretical and Experimental Physics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Anna A Ivanova
- Department of Theoretical and Experimental Physics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| |
Collapse
|
24
|
Gamal AY, Kumper RM, Al Gendy AERR. Doxycycline-Loaded β-Tricalcium Phosphate Release Following EDTA Root Surface Etching Improved the Clinical Outcomes in Chronic Periodontitis: An In Vivo Study. J Periodontol 2013; 84:924-33. [DOI: 10.1902/jop.2012.120343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|