1
|
Spaeth K, Nawaz Q, Schilling T, Goetz-Neunhoeffer F, Detsch R, Boccaccini AR, Hurle K. New Insights Into Application Relevant Properties of Cu 2+-Doped Brushite Cements. J Biomed Mater Res B Appl Biomater 2024; 112:e35479. [PMID: 39225415 DOI: 10.1002/jbm.b.35479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Doping of brushite cements with metal ions can entail many positive effects on biological and physicochemical properties. Cu2+ ions are known to exhibit antibacterial properties and can additionally have different positive effects on cells as trace elements, whereas high Cu2+ concentrations are cytotoxic. For therapeutical applications of bone cement, a combination of good biocompatibility and sufficient mechanical properties is required. Therefore, the aim of this study was to investigate different physicochemical and biological aspects, relevant for application, of a brushite cement with Cu2+-doped β-tricalcium phosphate, monocalcium phosphate monohydrate and phytic acid as setting retarder. Additionally, the ion release was compared with a cement with citric acid as setting retarder. The investigated cements showed good injectability coefficients, as well as compressive strength values sufficient for application. Furthermore, no antibacterial effects were detected irrespective of the Cu2+ concentration or the bacterial strain. The cell experiments with eluate samples showed that the viability of MC3T3-E1 cells tended to decrease with increasing Cu2+ concentration in the cement. It is suggested that these biological responses are caused by the difference in the Cu2+ release from the hardened cement depending on the solvent medium. Furthermore, the cements showed a steady release of Cu2+ ions to a lesser extent in comparison with a cement with citric acid as setting retarder, where a burst release of Cu2+ was observed. In conclusion, despite the anticipated antibacterial effect of Cu2+-doped cements was lacking and mammalian cell viability was slightly affected, Cu2+-concentrations maintained the physicochemical properties as well as the compressive strength of cements and the slow ion release from cements produced with phytic acid is considered advantageous compared to citric acid-based formulations.
Collapse
Affiliation(s)
- Karla Spaeth
- GeoZentrum Nordbayern, Mineralogy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Qaisar Nawaz
- Department Materials Science and Engineering, Biomaterials, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tatjana Schilling
- Department for Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication, Julius-Maximilians-Universität Würzburg (JMU), Würzburg, Germany
| | | | - Rainer Detsch
- Department Materials Science and Engineering, Biomaterials, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Aldo R Boccaccini
- Department Materials Science and Engineering, Biomaterials, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Katrin Hurle
- GeoZentrum Nordbayern, Mineralogy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
2
|
Griesiute D, Kizalaite A, Dubnika A, Klimavicius V, Kalendra V, Tyrpekl V, Cho SH, Goto T, Sekino T, Zarkov A. A copper-containing analog of the biomineral whitlockite: dissolution-precipitation synthesis, structural and biological properties. Dalton Trans 2024; 53:1722-1734. [PMID: 38167907 DOI: 10.1039/d3dt03756h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In the present work, copper whitlockite (Cu-WH, Ca18Cu2(HPO4)2(PO4)12) was successfully synthesized and comprehensively characterized, founding the base knowledge for its future studies in medicine, particularly for bone regeneration. This material is a copper-containing analog of the well-known biomineral magnesium whitlockite (Mg-WH, Ca18Mg2(HPO4)2(PO4)12). The synthesis of powders was performed by a dissolution-precipitation method in an aqueous medium under hydrothermal conditions. Phase conversion from brushite (CaHPO4·2H2O) to Cu-WH took place in an acidic medium in the presence of Cu2+ ions. Optimization of the synthesis conditions in terms of medium pH, temperature, time, Ca/Cu molar ratio and concentration of starting materials was performed. The crystal structure of the synthesized products was confirmed by XRD, FTIR and Raman spectroscopy, 1H and 31P solid-state NMR, and EPR. Morphological features and elemental distribution of the synthesized powders were studied by means of SEM/EDX analysis. The ion release in SBF solution was estimated using ICP-OES. Cytotoxicity experiments were performed with MC3T3-E1 cells. The study on thermal stability revealed that the synthesized material is thermally unstable and gradually decomposes upon annealing to Cu-substituted β-Ca3(PO4)2 and Ca2P2O7.
Collapse
Affiliation(s)
- Diana Griesiute
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania.
| | - Agne Kizalaite
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania.
| | - Arita Dubnika
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Faculty of Materials Science and Applied Chemistry, Institute of General Chemical Engineering, Riga Technical University, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia
| | - Vytautas Klimavicius
- Institute of Chemical Physics, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Vidmantas Kalendra
- Institute of Applied Electrodynamics and Telecommunications, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Vaclav Tyrpekl
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague, Czech Republic
| | - Sung Hun Cho
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Tomoyo Goto
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tohru Sekino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Aleksej Zarkov
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania.
| |
Collapse
|
3
|
Li X, Ma Z, Wu C, Zhang M, Wang Y, Zheng G, Zhu M, Li G, Fu F, Hao X. Injectable Self-Harden Antibiofilm Bioceramic Cement for Minimally Invasive Surgery. ACS Biomater Sci Eng 2023; 9:6225-6240. [PMID: 37906514 DOI: 10.1021/acsbiomaterials.3c00822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
There is an urgent demand for antibacterial bone grafts in clinics. Worryingly, the misuse and overuse of antibiotics accelerate the emergence of drug-resistant bacteria. Therefore, this study prepared a novel injectable bioceramic cement without antibiotics (FS-BCS), which showed good antibacterial properties by loading iron and strontium onto a matrix composed of brushite and calcium sulfate. The setting time, injectability, microstructure, antibacterial properties, anti-biofilm properties, and cytocompatibility of the novel bioceramic cement were evaluated thoroughly. The results showed that the material was highly injectable and antiwashout. The antibacterial tests revealed that FS-BCS inhibited the growth of 99.9% E. coli and S. aureus separately in the broth due to the synergistic effect of strontium and iron. Simultaneously, crystal violet and fluorescent staining tests revealed that the material could significantly inhibit the formation of E. coli and S. aureus biofilms. In addition, the co-incorporation of iron and strontium promoted the proliferation and migration of osteoblasts. Therefore, FS-BCS has good application potential in antibiotic-free anti-infection bone grafting using minimally invasive surgery.
Collapse
Affiliation(s)
- Xiaofang Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luo Yang 471023, Henan, China
| | - Zexu Ma
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luo Yang 471023, Henan, China
| | - Congping Wu
- School of Electronic Engineering, Chengdu Technological University, Chengdu 611730, Sichuan, China
| | - Mei Zhang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luo Yang 471023, Henan, China
| | - Yitong Wang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luo Yang 471023, Henan, China
| | - Guangxun Zheng
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luo Yang 471023, Henan, China
| | - Mengxin Zhu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luo Yang 471023, Henan, China
| | - Guangda Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luo Yang 471023, Henan, China
| | - Fangfang Fu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luo Yang 471023, Henan, China
| | - Xueqin Hao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luo Yang 471023, Henan, China
| |
Collapse
|
4
|
Hurle K, Maia F, Ribeiro V, Pina S, Oliveira J, Goetz-Neunhoeffer F, Reis R. Osteogenic lithium-doped brushite cements for bone regeneration. Bioact Mater 2021; 16:403-417. [PMID: 35415287 PMCID: PMC8965853 DOI: 10.1016/j.bioactmat.2021.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/25/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022] Open
Affiliation(s)
- K. Hurle
- GeoZentrum Nordbayern, Mineralogy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
- Corresponding author.
| | - F.R. Maia
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - V.P. Ribeiro
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - S. Pina
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - J.M. Oliveira
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - F. Goetz-Neunhoeffer
- GeoZentrum Nordbayern, Mineralogy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - R.L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga, Guimarães, Portugal
- Corresponding author. 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal.
| |
Collapse
|
5
|
Morilla C, Perdomo E, Hernández AK, Regalado R, Almirall A, Fuentes G, Campos Mora Y, Schomann T, Chan A, Cruz LJ. Effect of the Addition of Alginate and/or Tetracycline on Brushite Cement Properties. Molecules 2021; 26:molecules26113272. [PMID: 34071673 PMCID: PMC8199332 DOI: 10.3390/molecules26113272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 11/29/2022] Open
Abstract
Calcium phosphate cements have the advantage that they can be prepared as a paste that sets in a few minutes and can be easily adapted to the shape of the bone defect, which facilitates its clinical application. In this research, six formulations of brushite (dicalcium phosphate dihydrated) cement were obtained and the effect of the addition of sodium alginate was analyzed, such as its capacity as a tetracycline release system. The samples that contain sodium alginate set in 4 or 5 min and showed a high percentage of injectability (93%). The cements exhibit compression resistance values between 1.6 and 2.6 MPa. The drug was released in a range between 12.6 and 13.2% after 7 days. The antimicrobial activity of all the cements containing antibiotics was proven. All samples reached values of cell viability above 70 percent. We also observed that the addition of the sodium alginate and tetracycline improved the cell viability.
Collapse
Affiliation(s)
- Claudia Morilla
- Biomaterials Center, University of Havana, La Habana 10400, Cuba; (C.M.); (A.K.H.); (R.R.); (A.A.); (Y.C.M.)
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (T.S.); (L.J.C.)
- Percuros B.V., 2333 CL Leiden, The Netherlands;
| | - Elianis Perdomo
- Faculty of Automatic and Biomedical Engineering, Technological University of Havana, La Habana 11300, Cuba;
| | - Ana Karla Hernández
- Biomaterials Center, University of Havana, La Habana 10400, Cuba; (C.M.); (A.K.H.); (R.R.); (A.A.); (Y.C.M.)
| | - Ramcy Regalado
- Biomaterials Center, University of Havana, La Habana 10400, Cuba; (C.M.); (A.K.H.); (R.R.); (A.A.); (Y.C.M.)
| | - Amisel Almirall
- Biomaterials Center, University of Havana, La Habana 10400, Cuba; (C.M.); (A.K.H.); (R.R.); (A.A.); (Y.C.M.)
| | - Gastón Fuentes
- Biomaterials Center, University of Havana, La Habana 10400, Cuba; (C.M.); (A.K.H.); (R.R.); (A.A.); (Y.C.M.)
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (T.S.); (L.J.C.)
- Correspondence: or
| | - Yaima Campos Mora
- Biomaterials Center, University of Havana, La Habana 10400, Cuba; (C.M.); (A.K.H.); (R.R.); (A.A.); (Y.C.M.)
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (T.S.); (L.J.C.)
| | - Timo Schomann
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (T.S.); (L.J.C.)
- Percuros B.V., 2333 CL Leiden, The Netherlands;
| | - Alan Chan
- Percuros B.V., 2333 CL Leiden, The Netherlands;
| | - Luis J. Cruz
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (T.S.); (L.J.C.)
| |
Collapse
|