1
|
Clevenger AJ, Jha A, Moore E, Raghavan SA. Manipulating immune activity of macrophages: a materials and mechanics perspective. Trends Biotechnol 2025; 43:131-144. [PMID: 39155172 PMCID: PMC11717646 DOI: 10.1016/j.tibtech.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024]
Abstract
Macrophage immune cells exist on a plastic spectrum of phenotypes governed by their physical and biochemical environment. Controlling macrophage function to facilitate immunological regeneration or fighting pathology has emerged as a therapeutic possibility. The rate-limiting step in translating macrophage immunomodulation therapies has been the absence of fundamental knowledge of how physics and biochemistry in the macrophage microenvironment converge to inform phenotype. In this review we explore recent trends in bioengineered model systems that integrate physical and biochemical variables applied to macrophage mechanosensing and plasticity. We focus on how tuning of mechanical forces and biomaterial composition orchestrate macrophage function in physiological and pathological contexts. Ultimately, a broader understanding of stimuli-responsiveness in macrophages leads to informed design for future modulatory therapies.
Collapse
Affiliation(s)
- Abigail J Clevenger
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Aakanksha Jha
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Erika Moore
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
| | - Shreya A Raghavan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
2
|
Jones S, VandenHeuvel S, Luengo Martinez A, Birur R, Burgeson E, Gilbert I, Baker A, Wolf M, Raghavan SA, Rogers S, Cosgriff-Hernandez E. Suspension electrospinning of decellularized extracellular matrix: A new method to preserve bioactivity. Bioact Mater 2024; 41:640-656. [PMID: 39280898 PMCID: PMC11401211 DOI: 10.1016/j.bioactmat.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/18/2024] Open
Abstract
Decellularized extracellular matrices (dECM) have strong regenerative potential as tissue engineering scaffolds; however, current clinical options for dECM scaffolds are limited to freeze-drying its native form into sheets. Electrospinning is a versatile scaffold fabrication technique that allows control of macro- and microarchitecture. It remains challenging to electrospin dECM, which has led researchers to either blend it with synthetic materials or use enzymatic digestion to fully solubilize the dECM. Both strategies reduce the innate bioactivity of dECM and limit its regenerative potential. Herein, we developed a new suspension electrospinning method to fabricate a pure dECM fibrous mesh that retains its innate bioactivity. Systematic investigation of suspension parameters was used to identify critical rheological properties required to instill "spinnability," including homogenization, concentration, and particle size. Homogenization enhanced particle interaction to impart the requisite elastic behavior to withstand electrostatic drawing without breaking. A direct correlation between concentration and viscosity was observed that altered fiber morphology; whereas, particle size had minimal impact on suspension properties and fiber morphology. The versatility of this new method was demonstrated by electrospinning dECM with three common decellularization techniques (Abraham, Badylak, Luo) and tissue sources (intestinal submucosa, heart, skin). Bioactivity retention after electrospinning was confirmed using cell proliferation, angiogenesis, and macrophage polarization assays. Collectively, these findings provide a framework for researchers to electrospin dECM for diverse tissue engineering applications.
Collapse
Affiliation(s)
- Sarah Jones
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Sabrina VandenHeuvel
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Andres Luengo Martinez
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Ruchi Birur
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Eric Burgeson
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Champaign, IL, 61820, USA
| | - Isabelle Gilbert
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Aaron Baker
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Matthew Wolf
- Cancer Biomaterials Engineering Section, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Shreya A Raghavan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Simon Rogers
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Champaign, IL, 61820, USA
| | | |
Collapse
|
3
|
Karadeli HH, Kuram E. Single Component Polymers, Polymer Blends, and Polymer Composites for Interventional Endovascular Embolization of Intracranial Aneurysms. Macromol Biosci 2024; 24:e2300432. [PMID: 37992206 DOI: 10.1002/mabi.202300432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/03/2023] [Indexed: 11/24/2023]
Abstract
Intracranial aneurysm is the abnormal focal dilation in brain arteries. When untreated, it can enlarge to rupture points and account for subarachnoid hemorrhage cases. Intracranial aneurysms can be treated by blocking the flow of blood to the aneurysm sac with clipping of the aneurysm neck or endovascular embolization with embolics to promote the formation of the thrombus. Coils or an embolic device are inserted endovascularly into the aneurysm via a micro-catheter to fill the aneurysm. Many embolization materials have been developed. An embolization coil made of soft and thin platinum wire called the "Guglielmi detachable coil" (GDC) enables safer treatment for brain aneurysms. However, patients may experience aneurysm recurrence because of incomplete coil filling or compaction over time. Unsatisfactory recanalization rates and incomplete occlusion are the drawbacks of endovascular embolization. So, the fabrication of new medical devices with less invasive surgical techniques is mandatory to enhance the long-term therapeutic performance of existing endovascular procedures. For this aim, the current article reviews polymeric materials including blends and composites employed for embolization of intracranial aneurysms. Polymeric materials used in embolic agents, their advantages and challenges, results of the strategies used to overcome treatment, and results of clinical experiences are summarized and discussed.
Collapse
Affiliation(s)
- Hasan Hüseyin Karadeli
- Department of Neurology, Istanbul Medeniyet University Göztepe Prof. Dr. Süleyman Yalçın City Hospital, Istanbul, 34722, Turkey
| | - Emel Kuram
- Department of Mechanical Engineering, Gebze Technical University, Kocaeli, 41400, Turkey
| |
Collapse
|
4
|
Donehoo DA, Collier CA, VandenHeuvel SN, Roy S, Solberg SC, Raghavan SA. Degrees of macrophage-facilitated healing in aneurysm occlusion devices. J Biomed Mater Res B Appl Biomater 2024; 112:e35385. [PMID: 38345190 DOI: 10.1002/jbm.b.35385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/05/2023] [Accepted: 01/27/2024] [Indexed: 02/15/2024]
Abstract
Insufficient healing of aneurysms following treatment with vascular occlusion devices put patients at severe risk of fatal rupture. Therefore, promoting healing and not just occlusion is vital to enhance aneurysm healing. Following occlusion device implantation, healing is primarily orchestrated by macrophage immune cells, ending with fibroblasts depositing collagen to stabilize the aneurysm neck and dome, preventing rupture. Several modified occlusion devices are available currently on-market. Previous in vivo work demonstrated that modifications of occlusion devices with a shape memory polymer foam had enhanced aneurysm healing outcomes. To better understand cellular response to occlusion devices and improve aneurysm occlusion device design variables, we developed an in vitro assay to isolate prominent interactions between devices and key healing players: macrophages and fibroblasts. We used THP-1 monocyte derived macrophages and human dermal fibroblasts in our cell culture models. Macrophages were allowed device contact with on-market competitor aneurysm occlusion devices for up to 96 h, to allow for any spontaneous device-driven macrophage activation. Macrophage secreted factors were captured in the culture media, in response to device-specific activation. Fibroblasts were then exposed to device-conditioned macrophage media (with secreted factors alone), to determine if there were any device-induced changes in collagen secretion. Our in vitro studies were designed to test the direct effect of devices on macrophage activation, and the indirect effect of devices on collagen secretion by fibroblasts to promote aneurysm healing and stabilization. Over 96 h, macrophages displayed significant migration toward and interaction with all tested devices. As compared to other devices, shape memory polymer foams (SMM, Shape Memory Medical) induced significant changes in gene expression indicating a shift toward an anti-inflammatory pro-healing M2-like phenotype. Similarly, macrophages in contact with SMM devices secreted more vascular endothelial growth factor (VEGF) compared with other devices. Macrophage conditioned media from SMM-contacted macrophages actively promoted fibroblast secretion of collagen, comparable to amounts observed with exogenous stimulation via VEGF supplementation. Our data indicate that SMM devices may promote good aneurysm healing outcomes, because collagen production is an essential step to ultimately stabilize an aneurysm.
Collapse
Affiliation(s)
- Del A Donehoo
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Claudia A Collier
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | | | - Sanjana Roy
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Spencer C Solberg
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Shreya A Raghavan
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
5
|
Duan J, Zhao Q, He Z, Tang S, Duan J, Xing W. Current understanding of macrophages in intracranial aneurysm: relevant etiological manifestations, signaling modulation and therapeutic strategies. Front Immunol 2024; 14:1320098. [PMID: 38259443 PMCID: PMC10800944 DOI: 10.3389/fimmu.2023.1320098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Macrophages activation and inflammatory response play crucial roles in intracranial aneurysm (IA) formation and progression. The outcome of ruptured IA is considerably poor, and the mechanisms that trigger IA progression and rupture remain to be clarified, thereby developing effective therapy to prevent subarachnoid hemorrhage (SAH) become difficult. Recently, climbing evidences have been expanding our understanding of the macrophages relevant IA pathogenesis, such as immune cells population, inflammatory activation, intra-/inter-cellular signaling transductions and drug administration responses. Crosstalk between macrophages disorder, inflammation and cellular signaling transduction aggravates the devastating consequences of IA. Illustrating the pros and cons mechanisms of macrophages in IA progression are expected to achieve more efficient treatment interventions. In this review, we summarized the current advanced knowledge of macrophages activation, infiltration, polarization and inflammatory responses in IA occurrence and development, as well as the most relevant NF-κB, signal transducer and activator of transcription 1 (STAT1) and Toll-Like Receptor 4 (TLR4) regulatory signaling modulation. The understanding of macrophages regulatory mechanisms is important for IA patients' clinical outcomes. Gaining insight into the macrophages regulation potentially contributes to more precise IA interventions and will also greatly facilitate the development of novel medical therapy.
Collapse
Affiliation(s)
- Jian Duan
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| | - Qijie Zhao
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zeyuan He
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| | - Shuang Tang
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| | - Jia Duan
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| | - Wenli Xing
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| |
Collapse
|
6
|
Graul LM, Horn SJ, Nash LD, Cheung TB, Clubb FJ, Maitland DJ. Image-Based Evaluation of In Vivo Degradation for Shape-Memory Polymer Polyurethane Foam. Polymers (Basel) 2022; 14:4122. [PMID: 36236069 PMCID: PMC9571375 DOI: 10.3390/polym14194122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022] Open
Abstract
Shape-memory polymer (SMP) polyurethane foams have been applied as embolic devices and implanted in multiple animal models. These materials are oxidatively degradable and it is critical to quantify and characterize the degradation for biocompatibility assessments. An image-based method using high-resolution and magnification scans of histology sections was used to estimate the mass loss of the peripheral and neurovascular embolization devices (PED, NED). Detailed analysis of foam microarchitecture (i.e., struts and membranes) was used to estimate total relative mass loss over time. PED foams implanted in porcine arteries showed a degradation rate of ~0.11% per day as evaluated at 30-, 60-, and 90-day explant timepoints. NED foams implanted in rabbit carotid elastase aneurysms showed a markedly faster rate of degradation at ~1.01% per day, with a clear difference in overall degradation between 30- and 90-day explants. Overall, membranes degraded faster than the struts. NEDs use more hydrophobic foam with a smaller pore size (~150-400 μm) compared to PED foams (~800-1200 μm). Previous in vitro studies indicated differences in the degradation of the two polymer systems, but not to the magnitude seen in vivo. Implant location, animal species, and local tissue health are among the hypothesized reasons for different degradation rates.
Collapse
Affiliation(s)
- Lance M. Graul
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Staci J. Horn
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA
| | | | - Thomas B. Cheung
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Fred J. Clubb
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA
| | - Duncan J. Maitland
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- Shape Memory Medical Inc., Santa Clara, CA 95054, USA
| |
Collapse
|
7
|
Basak S, Bandyopadhyay A. Styrene‐butadiene‐styrene
‐based shape memory polymers: Evolution and the current state of art. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sayan Basak
- Department of Polymer Science & Technology University of Calcutta Kolkata West Bengal India
| | - Abhijit Bandyopadhyay
- Department of Polymer Science & Technology University of Calcutta Kolkata West Bengal India
| |
Collapse
|