1
|
Hasegawa K, Miyake T, Kobashi M, Tetsunaga T, Ago Y, Futagawa N, Miyahara H, Higuchi Y, Morizane S, Tsukahara H. Effect of calcium supplementation on bone deformity and histopathological findings of skin papules in a pediatric patient with vitamin D-dependent rickets type 2A: A case report. Clin Pediatr Endocrinol 2025; 34:131-136. [PMID: 40201379 PMCID: PMC11972871 DOI: 10.1297/cpe.2024-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/16/2025] [Indexed: 04/10/2025] Open
Abstract
Vitamin D-dependent rickets type 2A (VDDR2A) is an autosomal recessive disease caused by pathogenic variants of the vitamin D receptor (VDR) gene. VDDR2A rickets are usually resistant to native or active vitamin D treatment because of impaired active calcium absorption against the calcium concentration gradient, which is a ligand-dependent VDR action in the small intestine. Alopecia due to an impaired skin follicular cycle is occasionally observed in patients with VDDR2A. Among the pathogenic VDR variants, most in the DNA-binding domain and some in the ligand-binding domain, which affect the dimerization of VDR with the retinoic X receptor, are associated with alopecia. Herein, we report a case of VDDR2A caused by compound heterozygous pathogenic variants of the DNA-binding domain of VDR. Active vitamin D treatment did not ameliorate genu varum, rachitic changes in the roentgenogram, or abnormal laboratory findings. However, oral administration of calcium lactate dramatically improved these findings. The patient also experienced hair loss at two months of age and multiple papules on the skin at two yr of age, which did not improve with vitamin D or calcium supplementation. We also report the histopathological findings of skin papules in this patient.
Collapse
Affiliation(s)
- Kosei Hasegawa
- Department of Pediatrics, Okayama University Hospital, Okayama, Japan
| | - Tomoko Miyake
- Department of Dermatology, Okayama University Hospital, Okayama, Japan
| | - Mina Kobashi
- Department of Dermatology, Okayama University Hospital, Okayama, Japan
| | | | - Yuko Ago
- Department of Pediatrics, Okayama University Hospital, Okayama, Japan
| | - Natsuko Futagawa
- Department of Pediatrics, Okayama University Hospital, Okayama, Japan
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Miyahara
- Department of Pediatrics, Okayama University Hospital, Okayama, Japan
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yousuke Higuchi
- Department of Pediatrics, Okayama University Hospital, Okayama, Japan
| | - Shin Morizane
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hirokazu Tsukahara
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
2
|
Galdo-Torres D, Andreu S, Caballero O, Hernández-Ruiz I, Ripa I, Bello-Morales R, López-Guerrero JA. Immune Modulatory Effects of Vitamin D on Herpesvirus Infections. Int J Mol Sci 2025; 26:1767. [PMID: 40004230 PMCID: PMC11855552 DOI: 10.3390/ijms26041767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
In addition to its classical role in calcium and phosphate metabolism regulation, vitamin D also has an important impact on immunity modulation. Vitamin D regulates the immune response, shifting from a proinflammatory state to a more tolerogenic one by increasing the release of anti-inflammatory cytokines while downregulating proinflammatory cytokines. Thus, low levels of vitamin D have been associated with an increased risk of developing autoimmune diseases like multiple sclerosis and type 1 diabetes. Furthermore, this prohormone also enhances the release of well-known antimicrobial peptides, like cathelicidin LL-37 and β-defensins; therefore, it has been proposed that vitamin D serum levels might be related to the risk of well-known pathogen infections, including herpesviruses. These are a group of widely spread viral pathogens that can cause severe encephalitis or tumors like Kaposi's sarcoma and Burkitt lymphoma. However, there is no consensus on the minimum levels of vitamin D or the recommended daily dose, making it difficult to establish a possible association between these two factors. This narrative non-systematic review will analyze the mechanisms by which vitamin D regulates the immune system and recent studies about whether there is an association between vitamin D serum levels and herpesvirus infections.
Collapse
Affiliation(s)
| | | | | | | | | | - Raquel Bello-Morales
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (D.G.-T.); (O.C.); (I.R.); (J.A.L.-G.)
| | | |
Collapse
|
3
|
Skv M, Abraham SM, Eshwari O, Golla K, Jhelum P, Maity S, Komal P. Tremendous Fidelity of Vitamin D3 in Age-related Neurological Disorders. Mol Neurobiol 2024; 61:7211-7238. [PMID: 38372958 DOI: 10.1007/s12035-024-03989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
Vitamin D3 (VD) is a secosteroid hormone and shows a pleiotropic effect in brain-related disorders where it regulates redox imbalance, inflammation, apoptosis, energy production, and growth factor synthesis. Vitamin D3's active metabolic form, 1,25-dihydroxy Vitamin D3 (1,25(OH)2D3 or calcitriol), is a known regulator of several genes involved in neuroplasticity, neuroprotection, neurotropism, and neuroinflammation. Multiple studies suggest that VD deficiency can be proposed as a risk factor for the development of several age-related neurological disorders. The evidence for low serum levels of 25-hydroxy Vitamin D3 (25(OH)D3 or calcidiol), the major circulating form of VD, is associated with an increased risk of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), dementia, and cognitive impairment. Despite decades of evidence on low VD association with neurological disorders, the precise molecular mechanism behind its beneficial effect remains controversial. Here, we will be delving into the neurobiological importance of VD and discuss its benefits in different neuropsychiatric disorders. The focus will be on AD, PD, and HD as they share some common clinical, pathological, and epidemiological features. The central focus will be on the different attributes of VD in the aspect of its anti-oxidative, anti-inflammatory, anti-apoptotic, anti-cholinesterase activity, and psychotropic effect in different neurodegenerative diseases.
Collapse
Affiliation(s)
- Manjari Skv
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Sharon Mariam Abraham
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Omalur Eshwari
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Kishore Golla
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Priya Jhelum
- Centre for Research in Neuroscience and Brain Program, The Research Instituteof the, McGill University Health Centre , Montreal, QC, Canada
| | - Shuvadeep Maity
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Pragya Komal
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India.
| |
Collapse
|
4
|
Wang Y, Yu Y, Li L, Zheng M, Zhou J, Gong H, Feng B, Wang X, Meng X, Cui Y, Xia Y, Chu S, Lin L, Chang H, Zhou R, Ma M, Li Z, Ji R, Lu M, Yang X, Zuo X, Li S, Li Y. Bile acid-dependent transcription factors and chromatin accessibility determine regional heterogeneity of intestinal antimicrobial peptides. Nat Commun 2023; 14:5093. [PMID: 37607912 PMCID: PMC10444805 DOI: 10.1038/s41467-023-40565-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 08/01/2023] [Indexed: 08/24/2023] Open
Abstract
Antimicrobial peptides (AMPs) are important mediators of intestinal immune surveillance. However, the regional heterogeneity of AMPs and its regulatory mechanisms remain obscure. Here, we clarified the regional heterogeneity of intestinal AMPs at the single-cell level, and revealed a cross-lineages AMP regulation mechanism that bile acid dependent transcription factors (BATFs), NR1H4, NR1H3 and VDR, regulate AMPs through a ligand-independent manner. Bile acids regulate AMPs by perturbing cell differentiation rather than activating BATFs signaling. Chromatin accessibility determines the potential of BATFs to regulate AMPs at the pre-transcriptional level, thus shaping the regional heterogeneity of AMPs. The BATFs-AMPs axis also participates in the establishment of intestinal antimicrobial barriers of fetuses and the defects of antibacterial ability during Crohn's disease. Overall, BATFs and chromatin accessibility play essential roles in shaping the regional heterogeneity of AMPs at pre- and postnatal stages, as well as in maintenance of antimicrobial immunity during homeostasis and disease.
Collapse
Affiliation(s)
- Yue Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Yanbo Yu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for digestive disease, Jinan, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for digestive disease, Jinan, China
| | - Mengqi Zheng
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Jiawei Zhou
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Haifan Gong
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Bingcheng Feng
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiao Wang
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, China
| | - Xuanlin Meng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanyan Cui
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Yanan Xia
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Shuzheng Chu
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Lin Lin
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Huijun Chang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Ruchen Zhou
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Mingjun Ma
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhen Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for digestive disease, Jinan, China
| | - Rui Ji
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for digestive disease, Jinan, China
| | - Ming Lu
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoyun Yang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for digestive disease, Jinan, China
| | - Xiuli Zuo
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.
- Shandong Provincial Clinical Research Center for digestive disease, Jinan, China.
| | - Shiyang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.
- Advanced Medical Research Institute, Shandong University, Jinan, China.
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, China.
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.
- Shandong Provincial Clinical Research Center for digestive disease, Jinan, China.
| |
Collapse
|
5
|
Daryabor G, Gholijani N, Kahmini FR. A review of the critical role of vitamin D axis on the immune system. Exp Mol Pathol 2023; 132-133:104866. [PMID: 37572961 DOI: 10.1016/j.yexmp.2023.104866] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023]
Abstract
In recent years, the physiological and molecular functions of vitamin D (Vit-D) have been deeply investigated. At first, Vit-D was considered a regulator of mineral and skeletal homeostasis. However, due to the extensive-expression pattern of Vit-D receptor (VDR) in almost every non-skeletal cell, Vit-D is considered mainly a multifunctional agent with broad effects on various tissues, notably the immune system. The expression of VDR in immune cells such as dendritic cells, monocyte/macrophage, neutrophils, B cells and T cells has been well demonstrated. Besides, such immune cells are capable of metabolizing the active form of Vit-D which means that it can module the immune system in both paracrine and autocrine manners. Vit-D binding protein (DBP), that regulates the levels and homeostasis of Vit-D, is another key molecule capable of modulating the immune system. Recent studies indicate that dysregulation of Vit-D axis, variations in the DBP and VDR genes, and Vit-D levels might be risk factors for the development of autoimmune disease. Here, the current evidence regarding the role of Vit-D axis on the immune system, as well as its role in the development of autoimmune disease will be clarified. Further insight will be given to those studies that investigated the association between single nucleotide polymorphisms of DBP and VDR genes with autoimmune disease susceptibility.
Collapse
Affiliation(s)
- Gholamreza Daryabor
- Autoimmune Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasser Gholijani
- Autoimmune Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Rezaei Kahmini
- Autoimmune Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Wang P, Yang C, Lu J, Ren Y, Goltzman D, Miao D. Sirt1 protects against intervertebral disc degeneration induced by 1,25-dihydroxyvitamin D insufficiency in mice by inhibiting the NF-κB inflammatory pathway. J Orthop Translat 2023; 40:13-26. [PMID: 37200907 PMCID: PMC10185703 DOI: 10.1016/j.jot.2023.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/16/2023] [Accepted: 04/03/2023] [Indexed: 05/20/2023] Open
Abstract
Background It has been demonstrated that vitamin D deficiency is associated with an increased risk of patients developing lumbar disc herniation. However, intervertebral disc degeneration caused by active vitamin D deficiency has not been reported. Thus, the purpose of this study was to e investigate the role and mechanism of 1,25-dihydroxyvitamin D (1,25(OH)2D) insufficiency in promoting intervertebral disc degeneration. Methods The phenotypes of intervertebral discs were compared in wild-type mice and mice with heterozygous deletion of 1α-hydroxylase [1α(OH)ase+/-] at 8 mouths of age using iconography, histology and molecular biology. A mouse model that overexpressed Sirt1 in mesenchymal stem cells on a 1α(OH)ase+/- background (Sirt1Tg/1α(OH)ase+/-) was generated by crossing Prx1-Sirt1 transgenic mice with 1α(OH)ase+/- mice and comparing their intervertebral disc phenotypes with those of Sirt1Tg, 1α(OH)ase+/- and wild-type littermates at 8 months of age. A vitamin D receptor (VDR)-deficient cellular model was generated by knock-down of endogenous VDR using Ad-siVDR transfection into nucleus pulposus cells; VDR-deficient nucleus pulposus cells were then treated with or without resveratrol. The interactions between Sirt1 and acetylated p65, and p65 nuclear localization, were examined using co-immunoprecipitation, Western blots and immunofluorescence staining. VDR-deficient nucleus pulposus cells were also treated with 1,25(OH)2D3, or resveratrol or 1,25(OH)2D3 plus Ex527 (an inhibitor of Sirt1). Effects on Sirt1 expression, cell proliferation, cell senescence, extracellular matrix protein synthesis and degradation, nuclear factor-κB (NF-κB), and expression of inflammatory molecules, were examined, using immunofluorescence staining, Western blots and real-time RT-PCR. Results 1,25(OH)2D insufficiency accelerated intervertebral disc degeneration by reducing extracellular matrix protein synthesis and enhancing extracellular matrix protein degradation with reduced Sirt1 expression in nucleus pulposus tissues. Overexpression of Sirt1 in MSCs protected against 1,25(OH)2D deficiency-induced intervertebral disc degeneration by decreasing acetylation and phosphorylation of p65 and inhibiting the NF-κB inflammatory pathway. VDR or resveratrol activated Sirt1 to deacetylate p65 and inhibit its nuclear translocation into nucleus pulposus cells. Knockdown of VDR decreased VDR expression and significantly reduced the proliferation and extracellular matrix protein synthesis of nucleus pulposus cells, significantly increased the senescence of nucleus pulposus cells and significantly downregulated Sirt1 expression, and upregulated matrix metallopeptidase 13 (MMP13), tumor necrosis factor-α (TNF-α) and interleukin 1β (IL-1β) expression; the ratios of acetylated and phosphorylated p65/p65 in nucleus pulposus cells were also increased. Treatment of nucleus pulposus cells with VDR reduction using 1,25(OH)2D3 or resveratrol partially rescued the degeneration phenotypes, by up-regulating Sirt1 expression and inhibiting NF-κB inflammatory pathway; these effects in nucleus pulposus cells were blocked by inhibition of Sirt1. Conclusion Results from this study indicate that the 1,25(OH)2D/VDR pathway can prevent the degeneration of nucleus pulposus cells by inhibiting the NF-κB inflammatory pathway mediated by Sirt1.The Translational Potential of This Article: This study provides new insights into the use of 1,25(OH)2D3 to prevent and treat intervertebral disc degeneration caused by vitamin D deficiency.
Collapse
Affiliation(s)
- Peng Wang
- Department of Orthopaedics, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang., Lianyungang, Jiangsu, China
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cuicui Yang
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinhong Lu
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongxin Ren
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - David Goltzman
- Calcium Research Laboratory, McGill University Health Centre and Department of Medicine, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Dengshun Miao
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Irving AA, Waters BJ, Seeman JR, Plum LA, DeLuca HF. Vitamin D receptor absence does not enhance intestinal tumorigenesis in ApcPirc/+ rats. Biol Open 2022; 11:275913. [PMID: 35662320 PMCID: PMC9277077 DOI: 10.1242/bio.059290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/25/2022] [Indexed: 11/20/2022] Open
Abstract
Epidemiological observations have prompted some to posit that elevated circulating vitamin D is responsible for reduced colon cancer in individuals residing near the equator. We have previously demonstrated that vitamin D has no effect on colon cancer in two rodent models of intestinal tumorigenesis. We have now extended this line of inquiry to ask whether ablation of vitamin D receptor (VDR) affects tumorigenesis. A VDR null rat was developed using Cas9-CRISPR technology, which allowed us to investigate whether 1,25(OH)D3 signaling through its receptor plays a role in intestinal tumorigenesis. Loss of VDR expression alone did not induce tumorigenesis, even in animals exposed to the inflammatory agent dextran sodium sulfate. These VDR−/− rats were then crossed with ApcPirc/+ rats, which are predisposed to the development of intestinal neoplasms. In combination with the Pirc/+ mutation, VDR loss did not enhance tumor multiplicity, growth, or progression in the colon or small intestine. This study demonstrates that the vitamin D receptor does not impact tumor development, and strongly supports previous findings that vitamin D itself does not play a role in colon cancer development or progression. Alternative explanations are needed for the original latitude hypothesis, as well as observational data in humans. This article has an associated First Person interview with the first author of the paper. Summary: Loss of vitamin D receptor, alone or in combination with either an inflammatory agent or the ApcPirc/+ rat intestinal tumor model, did not enhance tumor occurrence, growth, or progression.
Collapse
Affiliation(s)
- Amy A Irving
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Bayley J Waters
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Jeremy R Seeman
- DiaSorin Inc, 1951 Northwestern Avenue, Stillwater, MN 55082, USA
| | - Lori A Plum
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Hector F DeLuca
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| |
Collapse
|
8
|
Effect of Vitamin D on Graft-versus-Host Disease. Biomedicines 2022; 10:biomedicines10050987. [PMID: 35625724 PMCID: PMC9138416 DOI: 10.3390/biomedicines10050987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022] Open
Abstract
The different cell subsets of the immune system express the vitamin D receptor (VDR). Through the VDR, vitamin D exerts different functions that influence immune responses, as previously shown in different preclinical models. Based on this background, retrospective studies explored the impacts of vitamin D levels on the outcomes of patients undergoing allogeneic hematopoietic stem-cell transplantation, showing that vitamin D deficiency is related to an increased risk of complications, especially graft-versus-host disease. These results were confirmed in a prospective cohort trial, although further studies are required to confirm this data. In addition, the role of vitamin D on the treatment of hematologic malignancies was also explored. Considering this dual effect on both the immune systems and tumor cells of patients with hematologic malignancies, vitamin D might be useful in this setting to decrease both graft-versus-host disease and relapse rates.
Collapse
|