1
|
Mahmoud MA, Ibrahim MM. Osteogenic sarcomas in two fish species giant sea catfish (Arius thalassinus), and Delagoa threadfin bream (Nemipterus bipunctatu) caught from Saudi Arabia, the Arabian Gulf. Tissue Cell 2024; 91:102629. [PMID: 39579738 DOI: 10.1016/j.tice.2024.102629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/27/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
During routine veterinary inspection of fish from fishing boats, fish auction yards, and fish landing stations, as well as the large fish market for detection of fish diseases, abnormalities and/or overgrowth in body surfaces and evaluation of hygienic conditions and fish quality at El-Jubail Province, Saudi Arabia., external neoplastic overgrowths were observed in two fish species, giant sea catfish (Arius thalassinus) and Delagoa threadfin bream (Nemipterus bipunctatu). In both fishes, the neoplasms appeared as bony masses, and it was hard in its consistency. In the giant sea catfish (Arius thalassinus), the tumor appeared as three multifocal hard swellings at different locations (in the head region, at the dorsal fin, and near the caudal fin). The tumor mass in the head region of this fish was observed at the base of the right angle of the lower jaw, and it was hard, bony, nodular to round, and of 0.7 cm in diameter. The second one was observed at the dorsal fin and appeared as a small oval to rod hard mass of 0.5 cm in diameter, while the third mass appeared as a large and irregular wart-shaped bony swelling, about 3 cm in diameter, that extended laterally on the left aspect of the caudal peduncle near the caudal fin. In radiographic examination, the neoplasm appeared small, round to large, irregular, dense bony overgrowth with variable sizes. In histopathological examination, evidences of fibro-osteosarcoma associated with prominent multiple rounded eosinophilic apoptotic bodies in the neoplastic bony trabeculae were observed. On the other side, the Delagoa threadfin bream (Nemipterus bipunctatus) showed only one yellowish to reddish, pedunculated, irregular, and very hard swelling at the base of the median site of the dorsal fin, and it was firmly connected to the spine of the dorsal fin; it was about 1 cm high with a wide base of 0.5 cm. In histopathological examination, the bony neoplastic masses in this fish appeared with massive edematous fibrous connective tissue and newly formed blood capillaries; abnormal mitosis, hemorrhages, and hemosiderin pigment deposition in the central and peripheral parts of the neoplasm were observed. New bone formation was confirmed using histochemical staining. Our results indicated that these two species are vulnerable to fibro-osteosarcoma. Further environmental investigations as well as immunohistochemical and molecular studies are required to indicate the potential impact of the environmental pollution on the incidence of the neoplasms in this locality and to correlate the cellular evidence of the neoplasms to a specific fish species.
Collapse
Affiliation(s)
- Mahmoud A Mahmoud
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza PO 12211, Egypt.
| | - Mustafa M Ibrahim
- Animal Health Research Institute, Dokki, Giza PO 12618, Egypt; Ministry of Environment, Water and Agriculture, Fish Welfare Branch, El-Jubail Province, Saudi Arabia
| |
Collapse
|
2
|
Zhang L, Liu N, Shao J, Gao D, Liu Y, Zhao Y, Han C, Chen D, Wang L, Lu WW, Yang F. Bidirectional control of parathyroid hormone and bone mass by subfornical organ. Neuron 2023; 111:1914-1932.e6. [PMID: 37084721 DOI: 10.1016/j.neuron.2023.03.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/02/2022] [Accepted: 03/23/2023] [Indexed: 04/23/2023]
Abstract
Parathyroid hormone (PTH) is one of the most important hormones for bone turnover and calcium homeostasis. It is unclear how the central nervous system regulates PTH. The subfornical organ (SFO) lies above the third ventricle and modulates body fluid homeostasis. Through retrograde tracing, electrophysiology, and in vivo calcium imaging, we identified the SFO as an important brain nucleus that responds to serum PTH changes in mice. Chemogenetic stimulation of GABAergic neurons in SFO induces decreased serum PTH followed by a decrease in trabecular bone mass. Conversely, stimulation of glutamatergic neurons in the SFO promoted serum PTH and bone mass. Moreover, we found that the blockage of different PTH receptors in the SFO affects peripheral PTH levels and the PTH's response to calcium stimulation. Furthermore, we identified a GABAergic projection from the SFO to the paraventricular nucleus, which modulates PTH and bone mass. These findings advance our understanding of the central neural regulation of PTH at cellular and circuit level.
Collapse
Affiliation(s)
- Lu Zhang
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Nian Liu
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China; Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jie Shao
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dashuang Gao
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yunhui Liu
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yingzi Zhao
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chuanliang Han
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Di Chen
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liping Wang
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; The Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen, Guangdong, China; CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen, Guangdong, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, China
| | - William Weijia Lu
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China; Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Fan Yang
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; The Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen, Guangdong, China; CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen, Guangdong, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, China.
| |
Collapse
|
3
|
Seidel R, Blumer M, Pechriggl EJ, Lyons K, Hall BK, Fratzl P, Weaver JC, Dean MN. Calcified cartilage or bone? Collagens in the tessellated endoskeletons of cartilaginous fish (sharks and rays). J Struct Biol 2017; 200:54-71. [PMID: 28923317 DOI: 10.1016/j.jsb.2017.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 02/08/2023]
Abstract
The primary skeletal tissue in elasmobranchs -sharks, rays and relatives- is cartilage, forming both embryonic and adult endoskeletons. Only the skeletal surface calcifies, exhibiting mineralized tiles (tesserae) sandwiched between a cartilage core and overlying fibrous perichondrium. These two tissues are based on different collagens (Coll II and I, respectively), fueling a long-standing debate as to whether tesserae are more like calcified cartilage or bone (Coll 1-based) in their matrix composition. We demonstrate that stingray (Urobatis halleri) tesserae are bipartite, having an upper Coll I-based 'cap' that merges into a lower Coll II-based 'body' zone, although tesserae are surrounded by cartilage. We identify a 'supratesseral' unmineralized cartilage layer, between tesserae and perichondrium, distinguished from the cartilage core in containing Coll I and X (a common marker for mammalian mineralization), in addition to Coll II. Chondrocytes within tesserae appear intact and sit in lacunae filled with Coll II-based matrix, suggesting tesserae originate in cartilage, despite comprising a diversity of collagens. Intertesseral joints are also complex in their collagenous composition, being similar to supratesseral cartilage closer to the perichondrium, but containing unidentified fibrils nearer the cartilage core. Our results indicate a unique potential for tessellated cartilage in skeletal biology research, since it lacks features believed diagnostic for vertebrate cartilage mineralization (e.g. hypertrophic and apoptotic chondrocytes), while offering morphologies amenable for investigating the regulation of complex mineralized ultrastructure and tissues patterned on multiple collagens.
Collapse
Affiliation(s)
- Ronald Seidel
- Department Biomaterials, Max Planck Institute of Colloids & Interfaces, Potsdam, Germany.
| | - Michael Blumer
- Division of Clinical and Functional Anatomy, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Kady Lyons
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| | - Brian K Hall
- Department of Biology, Dalhousie University, Halifax NS, Canada
| | - Peter Fratzl
- Department Biomaterials, Max Planck Institute of Colloids & Interfaces, Potsdam, Germany
| | - James C Weaver
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - Mason N Dean
- Department Biomaterials, Max Planck Institute of Colloids & Interfaces, Potsdam, Germany
| |
Collapse
|
4
|
Ahi EP. Signalling pathways in trophic skeletal development and morphogenesis: Insights from studies on teleost fish. Dev Biol 2016; 420:11-31. [PMID: 27713057 DOI: 10.1016/j.ydbio.2016.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/02/2016] [Accepted: 10/03/2016] [Indexed: 12/12/2022]
Abstract
During the development of the vertebrate feeding apparatus, a variety of complicated cellular and molecular processes participate in the formation and integration of individual skeletal elements. The molecular mechanisms regulating the formation of skeletal primordia and their development into specific morphological structures are tightly controlled by a set of interconnected signalling pathways. Some of these pathways, such as Bmp, Hedgehog, Notch and Wnt, are long known for their pivotal roles in craniofacial skeletogenesis. Studies addressing the functional details of their components and downstream targets, the mechanisms of their interactions with other signals as well as their potential roles in adaptive morphological divergence, are currently attracting considerable attention. An increasing number of signalling pathways that had previously been described in different biological contexts have been shown to be important in the regulation of jaw skeletal development and morphogenesis. In this review, I provide an overview of signalling pathways involved in trophic skeletogenesis emphasizing studies of the most species-rich group of vertebrates, the teleost fish, which through their evolutionary history have undergone repeated episodes of spectacular trophic diversification.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Zoology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria; Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland.
| |
Collapse
|
5
|
Mineral homeostasis and regulation of mineralization processes in the skeletons of sharks, rays and relatives (Elasmobranchii). Semin Cell Dev Biol 2015; 46:51-67. [DOI: 10.1016/j.semcdb.2015.10.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/13/2015] [Indexed: 01/01/2023]
|
6
|
Transcriptomic responses of corpuscle of Stannius gland of Japanese eels (Anguilla japonica) to changes in water salinity. Sci Rep 2015; 5:9836. [PMID: 25907828 PMCID: PMC5386212 DOI: 10.1038/srep09836] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 03/19/2015] [Indexed: 12/23/2022] Open
Abstract
Physiological studies of a unique endocrine gland in fish, named corpuscles of Stannius (CS), described a Ca2(+)-regulatory function for this gland mediated by stanniocalcin-1, a hypocalcemic polypeptide hormone. However, to date, the endocrine functions of the glands have not been completely elucidated.We hypothesized that other unidentified active principles in the glands are involved in the regulation of plasma ion (Na(+), Ca2(+)) and/or blood pressure. In this study, transcriptome sequencing of CS glands was performed using Japanese eels (Anguilla japonica) adapted to freshwater (FW) or seawater (SW) to reveal the presence and differential expression of genes encoding proteins related to the ion-osmoregulatory and pressor functions. We acquired a total of 14.1 Mb and 12.1 Mb quality-trimmed reads from the CS glands collected from FW and SW adapted eels, respectively. The de novo assembly resulted in 9254 annotated genes. Among them, 475 genes were differentially expressed with 357 up- and 118 down-regulated in the SW group. Gene ontology analysis further demonstrated the presence of natriuresis and pressor related genes. In summary, ours is the first study using high-throughput sequencing to identify gene targets that could explain the physiological importance of the CS glands.
Collapse
|
7
|
On JSW, Chow BKC, Lee LTO. Evolution of parathyroid hormone receptor family and their ligands in vertebrate. Front Endocrinol (Lausanne) 2015; 6:28. [PMID: 25806022 PMCID: PMC4354418 DOI: 10.3389/fendo.2015.00028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/17/2015] [Indexed: 11/13/2022] Open
Abstract
The presence of the parathyroid hormones in vertebrates, including PTH, PTH-related peptide (PTHrP), and tuberoinfundibular peptide of 39 residues (TIP39), has been proposed to be the result of two rounds of whole genome duplication in the beginning of vertebrate diversification. Bioinformatics analyses, in particular chromosomal synteny study and the characterization of the PTH ligands and their receptors from various vertebrate species, provide evidence that strongly supports this hypothesis. In this mini-review, we summarize recent advances in studies regarding the molecular evolution and physiology of the PTH ligands and their receptors, with particular focus on non-mammalian vertebrates. In summary, the PTH family of peptides probably predates early vertebrate evolution, indicating a more ancient existence as well as a function of these peptides in invertebrates.
Collapse
Affiliation(s)
- Jason S. W. On
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Billy K. C. Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Leo T. O. Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
- *Correspondence: Leo T. O. Lee, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China e-mail:
| |
Collapse
|
8
|
Danks JA, Freeman AN, Martin TJ. Historical Perspective and Evolutionary Origins of Parathyroid Hormone-Related Protein. Clin Rev Bone Miner Metab 2014. [DOI: 10.1007/s12018-014-9163-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Bouillon R, Suda T. Vitamin D: calcium and bone homeostasis during evolution. BONEKEY REPORTS 2014; 3:480. [PMID: 24466411 DOI: 10.1038/bonekey.2013.214] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/27/2013] [Indexed: 12/30/2022]
Abstract
Vitamin D3 is already found early in the evolution of life but essentially as inactive end products of the photochemical reaction of 7-dehydrocholestol with ultraviolet light B. A full vitamin D (refers to vitamin D2 and D3) endocrine system, characterized by a specific VDR (vitamin D receptor, member of the nuclear receptor family), specific vitamin D metabolizing CYP450 enzymes regulated by calciotropic hormones and a dedicated plasma transport-protein is only found in vertebrates. In the earliest vertebrates (lamprey), vitamin D metabolism and VDR may well have originated from a duplication of a common PRX/VDR ancestor gene as part of a xenobiotic detoxification pathway. The vitamin D endocrine system, however, subsequently became an important regulator of calcium supply for an extensive calcified skeleton. Vitamin D is essential for normal calcium and bone homeostasis as shown by rickets in vitamin D-deficient growing amphibians, reptiles, birds and mammals. From amphibians onward, bone is gradually more dynamic with regulated bone resorption, mainly by combined action of PTH and 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) on the generation and function of multinucleated osteoclasts. Therefore, bone functions as a large internal calcium reservoir, under the control of osteoclasts. Osteocytes also display a remarkable spectrum of activities, including mechanical sensing and regulating mineral homeostasis, but also have an important role in global nutritional and energy homeostasis. Mineralization from reptiles onward is under the control of well-regulated SIBLING proteins and associated enzymes, nearly all under the control of 1,25(OH)2D3. The vitamin D story thus started as inert molecule but gained an essential role for calcium and bone homeostasis in terrestrial animals to cope with the challenge of higher gravity and calcium-poor environment.
Collapse
Affiliation(s)
- Roger Bouillon
- Clinical and Experimental Endocrinology, KU Leuven; Department of Endocrinology, University Hospitals Leuven , Leuven, Belgium
| | - Tatsuo Suda
- Research Center for Genomic Medicine, Saitama Medical University , Saitama, Japan
| |
Collapse
|
10
|
Lin CH, Su CH, Hwang PP. Calcium-sensing receptor mediates Ca(2+) homeostasis by modulating expression of PTH and stanniocalcin. Endocrinology 2014; 155:56-67. [PMID: 24169558 DOI: 10.1210/en.2013-1608] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Regulation of the synthesis and/or secretion of hypocalcemic and hypercalcemic hormones by the calcium-sensing receptor (CaSR) is believed to be a major pathway for maintaining Ca(2+) homeostasis in vertebrates, based primarily on findings in mammals. However, understanding the evolution of this physiological process requires that it be described in nonmammalian species. Here, we describe the use of zebrafish as a model to investigate whether CaSR contributes to body fluid Ca(2+) homeostasis by regulating synthesis of hypercalcemic (PTH1 and PTH2) and hypocalcemic (stanniocalcin [STC]) hormones. We report that PTH1, but not PTH2, increases Ca(2+) uptake through stimulation of the expression of the gene encoding the epithelial Ca(2+) channel (ecac). Furthermore, we demonstrate that CaSR, as a Ca(2+) sensor, may affect stc-1 and pth1 expressions differently, thereby suppressing ecac expression and Ca(2+) uptake. Finally, we show that CaSR knockdown has time-dependent effects on STC-1 and PTH1 expression, and these 2 hormones have mutual effects on the expression, thus forming a possible counterbalance. These findings enhance our understanding of CaSR-PTH-STC control of Ca(2+) homeostasis in vertebrates.
Collapse
Affiliation(s)
- Chia-Hao Lin
- Institute of Cellular and Organismic Biology (C.-H.L., C.-H.S., P.-P.H), Academia Sinica, Taipei 11529, Taiwan, Republic of China; and Institute of Fishery Science (C.-H.S., P.-P.H), National Taiwan University, Taipei 10617, Taiwan, Republic of China
| | | | | |
Collapse
|
11
|
D'Souza DG, Rana K, Milley KM, MacLean HE, Zajac JD, Bell J, Brenner S, Venkatesh B, Richardson SJ, Danks JA. Expression of Wnt signaling skeletal development genes in the cartilaginous fish, elephant shark (Callorhinchus milii). Gen Comp Endocrinol 2013; 193:1-9. [PMID: 23871650 DOI: 10.1016/j.ygcen.2013.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 06/25/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
Abstract
Jawed vertebrates (Gnasthostomes) are broadly separated into cartilaginous fishes (Chondricthyes) and bony vertebrates (Osteichthyes). Cartilaginous fishes are divided into chimaeras (e.g. ratfish, rabbit fish and elephant shark) and elasmobranchs (e.g. sharks, rays and skates). Both cartilaginous fish and bony vertebrates are believed to have a common armoured bony ancestor (Class Placodermi), however cartilaginous fish are believed to have lost bone. This study has identified and investigated genes involved in skeletal development in vertebrates, in the cartilaginous fish, elephant shark (Callorhinchus milii). Ctnnb1 (β-catenin), Sfrp (secreted frizzled protein) and a single Sost or Sostdc1 gene (sclerostin or sclerostin domain-containing protein 1) were identified in the elephant shark genome and found to be expressed in a number of tissues, including cartilage. β-catenin was also localized in several elephant shark tissues. The expression of these genes, which belong to the Wnt/β-catenin pathway, is required for normal bone formation in mammals. These findings in the cartilaginous skeleton of elephant shark support the hypothesis that the common ancestor of cartilaginous fishes and bony vertebrates had the potential for making bone.
Collapse
Affiliation(s)
- Damian G D'Souza
- School of Medical Sciences, RMIT University, Bundoora 3083, Australia; Health Innovations Research Institute, RMIT University, Bundoora 3083, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Fisher A, Srikusalanukul W, Davis M, Smith P. Cardiovascular diseases in older patients with osteoporotic hip fracture: prevalence, disturbances in mineral and bone metabolism, and bidirectional links. Clin Interv Aging 2013; 8:239-56. [PMID: 23460043 PMCID: PMC3585505 DOI: 10.2147/cia.s38856] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Considerable controversy exists regarding the contribution of mineral/bone metabolism abnormalities to the association between cardiovascular diseases (CVDs) and osteoporotic fractures. AIMS AND METHODS To determine the relationships between mineral/bone metabolism biomarkers and CVD in 746 older patients with hip fracture, clinical data were recorded and serum concentrations of parathyroid hormone (PTH), 25-hydroxyvitamin D, calcium, phosphate, magnesium, troponin I, parameters of bone turnover, and renal, liver, and thyroid functions were measured. RESULTS CVDs were diagnosed in 472 (63.3%) patients. Vitamin D deficiency was similarly prevalent in patients with (78.0%) and without (82.1%) CVD. The CVD group had significantly higher mean PTH concentrations (7.6 vs 6.0 pmol/L, P < 0.001), a higher prevalence of secondary hyperparathyroidism (SPTH) (PTH > 6.8 pmol/L, 43.0% vs 23.3%, P < 0.001), and excess bone resorption (urinary deoxypyridinoline corrected by creatinine [DPD/Cr] > 7.5 nmol/μmol, 87.9% vs 74.8%, P < 0.001). In multivariate regression analysis, SHPT (odds ratio [OR] 2.6, P = 0.007) and high DPD/Cr (OR 2.8, P = 0.016) were independent indictors of CVD. Compared to those with both PTH and DPD/Cr in the normal range, multivariate-adjusted ORs for the presence of CVD were 17.3 (P = 0.004) in subjects with SHPT and 9.7 (P < 0.001) in patients with high DPD/Cr. CVD was an independent predicator of SHPT (OR 2.8, P = 0.007) and excess DPD/Cr (OR 2.5, P = 0.031). CVD was predictive of postoperative myocardial injury, while SHPT was also an independent predictor of prolonged hospital stay and in-hospital death. CONCLUSION SHPT and excess bone resorption are independent pathophysiological mediators underlying the bidirectional associations between CVD and hip fracture, and therefore are important diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- A Fisher
- Department of Geriatric Medicine, The Canberra Hospital, Canberra, ACT, Australia.
| | | | | | | |
Collapse
|
13
|
Pinheiro PLC, Cardoso JCR, Power DM, Canário AVM. Functional characterization and evolution of PTH/PTHrP receptors: insights from the chicken. BMC Evol Biol 2012; 12:110. [PMID: 22768871 PMCID: PMC3483286 DOI: 10.1186/1471-2148-12-110] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 06/18/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The parathyroid hormone (PTH)-family consists of a group of structurally related factors that regulate calcium and bone homeostasis and are also involved in development of organs such as the heart, mammary gland and immune system. They interact with specific members of family 2 B1 G-protein coupled receptors (GPCRs), which have been characterised in teleosts and mammals. Two PTH/PTHrP receptors, PTH1R and PTH2R exist in mammals and in teleost fish a further receptor PTH3R has also been identified. Recently in chicken, PTH-family members involved in calcium transport were characterized and specific PTHRs are suggested to exist although they have not yet been isolated or functionally characterized. The aim of this study is to further explore the evolution and function of the vertebrate PTH/PTHrP system through the isolation, phylogenetic analysis and functional characterization of the chicken receptors. RESULTS Two PTHRs were isolated in chicken and sequence comparison and phylogenetic analysis indicate that the chicken receptors correspond to PTH1R and PTH3R, which emerged prior to the teleost/tetrapod divergence since they are present in cartilaginous fish. The vertebrate PTH2R receptor and its ligand TIP39 have been lost from bird genomes. Chicken PTH1R and PTH3R have a divergent and widespread tissue expression and are also evident in very early embryonic stages of development. Receptor stimulation studies using HEK293 cells stably expressing the chicken PTH1R and PTH3R and monitoring cAMP production revealed they are activated by chicken 1-34 N-terminal PTH-family peptides in a dose dependent manner. PTH-L and PTHrP were the most effective peptides in activating PTH1R (EC(50) = 7.7 nM and EC(50) = 22.7 nM, respectively). In contrast, PTH-L (100 nM) produced a small cAMP accumulation on activation of PTH3R but PTHrP and PTH (EC(50) = 2.5 nM and EC(50) = 22.1 nM, respectively) readily activated the receptor. PTHrP also stimulated intracellular Ca(2+) accumulation on activation of PTH1R but not PTH3R. CONCLUSION Two PTHR homologues of the vertebrate PTH1R and PTH3R were isolated and functionally characterized in chicken. Their distinct pattern of expression during embryo development and in adult tissues, together with their ligand preference, suggests that they have acquired specific functions, which have contributed to their maintenance in the genome. PTH2R and its activating ligand, TIP39, are absent from bird genomes. Nonetheless identification of putative PTH2R and TIP39 in the genome of an ancient agnathan, lamprey, suggests the PTH/PTHrP ligand and receptor family was already present in an early basal paraphyletic group of vertebrates and during the vertebrate radiation diverged via gene/genome duplication and deletion events. Knowledge of the role PTH/PTHrP system in early vertebrates will help to establish evolution of function.
Collapse
Affiliation(s)
- Pedro L C Pinheiro
- Centre of Marine Sciences, Comparative Molecular Endocrinology, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | | | | | | |
Collapse
|
14
|
McCauley LK, Martin TJ. Twenty-five years of PTHrP progress: from cancer hormone to multifunctional cytokine. J Bone Miner Res 2012; 27:1231-9. [PMID: 22549910 PMCID: PMC4871126 DOI: 10.1002/jbmr.1617] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/04/2012] [Accepted: 03/20/2012] [Indexed: 01/30/2023]
Abstract
Twenty-five years ago a "new" protein was identified from cancers that caused hypercalcemia. It was credited for its ability to mimic parathyroid hormone (PTH), and hence was termed parathyroid hormone-related protein (PTHrP). Today it is recognized for its widespread distribution, its endocrine, paracrine, and intracrine modes of action driving numerous physiologic and pathologic conditions, and its central role in organogenesis. The multiple biological activities within a complex molecule with paracrine modulation of adjacent target cells present boundless possibilities. The protein structure of PTHrP has been traced, dissected, and deleted comprehensively and conditionally, yet numerous questions lurk in its past that will carry into the future. Issues of the variable segments of the protein, including the enigmatic nuclear localization sequence, are only recently being clarified. Aspects of PTHrP production and action in the menacing condition of cancer are emerging as dichotomies that may represent intended temporal actions of PTHrP. Relative to PTH, the hormone regulating calcium homeostasis, PTHrP "controls the show" locally at the PTH/PTHrP receptor throughout the body. Great strides have been made in our understanding of PTHrP actions, yet years of exciting investigation and discovery are imminent. © 2012 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Laurie K McCauley
- Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, 1011 N. University Ave., Ann Arbor, MI 48105, USA.
| | | |
Collapse
|
15
|
Danks JA, D'Souza DG, Gunn HJ, Milley KM, Richardson SJ. Evolution of the parathyroid hormone family and skeletal formation pathways. Gen Comp Endocrinol 2011; 170:79-91. [PMID: 21074535 DOI: 10.1016/j.ygcen.2010.10.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 10/31/2010] [Indexed: 12/28/2022]
Abstract
Bone is considered to be a feature of higher vertebrates and one of the features that was required for the movement from water onto land. But there are a number of evolutionarily important species that have cartilaginous skeletons, including sharks. Both bony and cartilaginous fish are believed to have a common ancestor who had a bony skeleton. A number of factors and pathways have been shown to be involved in the development and maintenance of bony skeleton including the Wnt pathway and the parathyroid hormone gene family. The study of these pathways and factors in cartilaginous animals may shed light on the evolution of the vertebrate skeleton.
Collapse
Affiliation(s)
- Janine A Danks
- Comparative Endocrinology and Biochemistry Laboratory, School of Medical Sciences, RMIT University, Bundoora, Victoria, Australia.
| | | | | | | | | |
Collapse
|