1
|
Panahipour L, Kargarpour Z, Mildner M, Kühtreiber H, Gruber R. RNAseq of peripheral blood mononucleated cells exposed to platelet-rich fibrin and enamel matrix derivatives. Sci Rep 2025; 15:3661. [PMID: 39881164 PMCID: PMC11779933 DOI: 10.1038/s41598-025-86791-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/14/2025] [Indexed: 01/31/2025] Open
Abstract
Platelet-rich fibrin (PRF) and Enamel Matrix Derivatives (EMD) can support the local regenerative events in periodontal defects. There is reason to suggest that PRF and EMD exert part of their activity by targeting the blood-derived cells accumulating in the early wound healing blastema. However, the impact of PRF and EMD on blood cell response remains to be discovered. To this aim, we have exposed human peripheral blood mononucleated cells (PBMCs) to PRF lysates prepared by a swing-out rotor and EMD, followed by bulk RNA sequencing. A total of 111 and 8 genes are up- and down-regulated by PRF under the premise of an at least log2 two-fold change and a minus log10 significance level of two, respectively. Representative is a characteristic IFN response indicated by various human leukocyte antigens (HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQA2, HLA-DRA, HLA-DRB1, HLA-DRB5), gamma Fc receptors (FCGR1A, FCGR1B, FCGR3B), chemokines (CXCL9-11), and calprotectin (S100A8/9 and S100A12), complement (C1QA/B, C2) and interferon-induced guanylate-binding proteins (GBP1, GBP5). With EMD, 67 and 29 genes are up- and down-regulated, respectively. Characteristic of the upregulated genes are tensins (TNS1 and TNS3). Among the genes downregulated by EMD were epsilon Fc receptors (FCER1A; FCER2), Fc receptor-like proteins (FCRL1, FCRL3) and CX3CR1. Genes commonly upregulated by PRF and EMD were most noticeably NXPH4 and MN1, as well as FN1, MMP14, MERTK, and AXL. Our findings suggest that PRF provokes an inflammatory response, while EMD dampens IgE signaling in peripheral mononucleated blood cells.
Collapse
Affiliation(s)
- Layla Panahipour
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria
| | - Zahra Kargarpour
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Hannes Kühtreiber
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria.
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, 3010, Switzerland.
- Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria.
| |
Collapse
|
2
|
Vlashi R, Zhang X, Li H, Chen G. Potential therapeutic strategies for osteoarthritis via CRISPR/Cas9 mediated gene editing. Rev Endocr Metab Disord 2024; 25:339-367. [PMID: 38055160 DOI: 10.1007/s11154-023-09860-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
Osteoarthritis (OA) is an incapacitating and one of the most common physically degenerative conditions with an assorted etiology and a highly complicated molecular mechanism that to date lacks an efficient treatment. The capacity to design biological networks and accurately modify existing genomic sites holds an apt potential for applications across medical and biotechnological sciences. One of these highly specific genomes editing technologies is the CRISPR/Cas9 mechanism, referred to as the clustered regularly interspaced short palindromic repeats, which is a defense mechanism constituted by CRISPR associated protein 9 (Cas9) directed by small non-coding RNAs (sncRNA) that bind to target DNA through Watson-Crick base pairing rules where subsequent repair of the target DNA is initiated. Up-to-date research has established the effectiveness of the CRISPR/Cas9 mechanism in targeting the genetic and epigenetic alterations in OA by suppressing or deleting gene expressions and eventually distributing distinctive anti-arthritic properties in both in vitro and in vivo osteoarthritic models. This review aims to epitomize the role of this high-throughput and multiplexed gene editing method as an analogous therapeutic strategy that could greatly facilitate the clinical development of OA-related treatments since it's reportedly an easy, minimally invasive technique, and a comparatively less painful method for osteoarthritic patients.
Collapse
Affiliation(s)
- Rexhina Vlashi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xingen Zhang
- Department of Orthopedics, Jiaxing Key Laboratory for Minimally Invasive Surgery in Orthopaedics & Skeletal Regenerative Medicine, Zhejiang Rongjun Hospital, Jiaxing, 314001, China
| | - Haibo Li
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children's Hospital, Ningbo, China.
- Ningbo Key Laboratory for the Prevention and Treatment of Embryogenic Diseases, Ningbo Women and Children's Hospital, Ningbo, China.
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
3
|
Hu C, Liu J, Yi J. The Effect of Salmon Calcitonin Adjuvant Treatment for Lumbar Spine Fracture: A Prospective, Randomized, Controlled Trial. J Nutr Sci Vitaminol (Tokyo) 2024; 70:406-410. [PMID: 39477477 DOI: 10.3177/jnsv.70.406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The study aimed at analyzing the therapeutic effect of salmon calcitonin on patients with lumbar spine fracture after operation. Eighty-eight cases with lumbar spine fracture who underwent percutaneous vertebroplasty (PVP) in The Huichang People's Hospital from February 2020 to February 2023 were separated into two groups. The 44 cases in the control group were treated with calcium carbonate and Vitamin D3 tablets, on the basis, the salmon calcitonin was applied to treat the 44 cases in study group. The pain degree, bone metabolism index and matrix metalloproteinase levels were determined and compared between two groups. Lumbar function and daily living activity ability in two groups were evaluated, and adverse reactions during treatment were observed. The pain degree in study group was alleviated after treatment for 3 mo compared with the control group (p<0.05). The bone specific alkaline phosphatase (BALP) and osteocalcin (OC) levels were increased, while beta C-terminal cross-linked telopeptides of type I collagen (β-CTX) levels were decreased in study group after treatment for 3 mo compared with control group (p<0.05). After treatment for 3 mo, the serum matrix metalloproteinase-3 (MMP-3) and matrix metalloproteinase-9 (MMP-9) levels in study group were lower than those in control group (p<0.05). Three months after treatment, the Oswestry Disability Index (ODI) score was lower and Barthel Index (BI) score was higher in study group than those of control group (p<0.05). No severe adverse reactions were observed in both groups during treatment (p>0.05). Salmon calcitonin can relieve the pain degree, improve the levels of bone metabolism and matrix metalloproteinase, and improve the lumbar spine function and ability of daily living activity in patients with lumbar spine fracture.
Collapse
Affiliation(s)
- Chunhua Hu
- Department of Spine Surgery, Huichang People's Hospital
| | - Jun Liu
- Department of Orthopaedics, Changxing Hospital of Traditional Chinese Medicine
| | - Jinrong Yi
- Department of Anesthesiology, Ganzhou Maternal and Child Health Hospital
| |
Collapse
|
4
|
The role of hypertrophic chondrocytes in regulation of the cartilage-to-bone transition in fracture healing. Bone Rep 2022; 17:101616. [PMID: 36105852 PMCID: PMC9465425 DOI: 10.1016/j.bonr.2022.101616] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/05/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022] Open
Abstract
Endochondral bone formation is an important pathway in fracture healing, involving the formation of a cartilaginous soft callus and the process of cartilage-to-bone transition. Failure or delay in the cartilage-to-bone transition causes an impaired bony union such as nonunion or delayed union. During the healing process, multiple types of cells including chondrocytes, osteoprogenitors, osteoblasts, and endothelial cells coexist in the callus, and inevitably crosstalk with each other. Hypertrophic chondrocytes located between soft cartilaginous callus and bony hard callus mediate the crosstalk regulating cell-matrix degradation, vascularization, osteoclast recruitment, and osteoblast differentiation in autocrine and paracrine manners. Furthermore, hypertrophic chondrocytes can become osteoprogenitors and osteoblasts, and directly contribute to woven bone formation. In this review, we focus on the roles of hypertrophic chondrocytes in fracture healing and dissect the intermingled crosstalk in fracture callus during the cartilage-to-bone transition.
Collapse
|
5
|
Valli A, Kuuliala K, Virtanen A, Kuuliala A, Palmroth M, Peltomaa R, Vidqvist KL, Leirisalo-Repo M, Silvennoinen O, Isomäki P. Tofacitinib treatment modulates the levels of several inflammation-related plasma proteins in rheumatoid arthritis and baseline levels of soluble biomarkers associate with the treatment response. Clin Exp Immunol 2022; 210:141-150. [PMID: 36124688 PMCID: PMC9750823 DOI: 10.1093/cei/uxac085] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/18/2022] [Accepted: 09/15/2022] [Indexed: 01/12/2023] Open
Abstract
The data on the effects of tofacitinib on soluble proteins in patients with rheumatoid arthritis (RA) is currently very limited. We analyzed how tofacitinib treatment and thus inhibition of the Janus kinase-signal transducer and activation of transcription pathway affects the in vivo levels of inflammation-related plasma proteins in RA patients. In this study, 16 patients with active RA [28-joint disease activity score (DAS28) >3.2] despite treatment with conventional synthetic disease-modifying antirheumatic drugs (csDMARDs) started tofacitinib treatment 5 mg twice daily. Levels of 92 inflammation-related plasma proteins were determined by proximity extension assay at baseline and at 3 months. Tofacitinib treatment for 3 months, in csDMARD background, decreased the mean DAS28 from 4.4 to 2.6 (P < 0.001). Marked (>20%) and statistically significant (P < 0.05) changes were found in the levels of 21 proteins, 18 of which decreased and 3 increased. Of these proteins, 17 are directly involved in inflammatory responses or in the cellular response to cytokines. The highest (>50%) decrease was observed for interleukin-6 (IL-6), C-X-C motif chemokine ligand 1, matrix metalloproteinase-1, and AXIN1. Higher baseline levels of IL-6 and lower levels of C-C motif chemokine 11 and Delta and Notch-like epidermal growth factor-related receptors were associated with DAS28 improvement. Our results indicate that tofacitinib downregulates several proinflammatory plasma proteins that may contribute to the clinical efficacy of tofacitinib. In addition, soluble biomarkers may predict the treatment response to tofacitinib.
Collapse
Affiliation(s)
- Atte Valli
- Molecular Immunology Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Krista Kuuliala
- Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anniina Virtanen
- Molecular Immunology Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Antti Kuuliala
- Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Maaria Palmroth
- Molecular Immunology Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ritva Peltomaa
- Inflammation Center, Department of Rheumatology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Marjatta Leirisalo-Repo
- Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, Helsinki, Finland,Inflammation Center, Department of Rheumatology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Olli Silvennoinen
- Molecular Immunology Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland,Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Tampere, Finland,Institute of Biotechnology, HiLIFE Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
| | - Pia Isomäki
- Correspondence: Pia Isomäki, Department of Internal Medicine, Centre for Rheumatic Diseases, Tampere University Hospital, P.O. Box, 2000, FI-33521 Tampere, Finland.
| |
Collapse
|
6
|
Hwang CD, Pagani CA, Nunez JH, Cherief M, Qin Q, Gomez-Salazar M, Kadaikal B, Kang H, Chowdary AR, Patel N, James AW, Levi B. Contemporary perspectives on heterotopic ossification. JCI Insight 2022; 7:158996. [PMID: 35866484 PMCID: PMC9431693 DOI: 10.1172/jci.insight.158996] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Heterotopic ossification (HO) is the formation of ectopic bone that is primarily genetically driven (fibrodysplasia ossificans progressiva [FOP]) or acquired in the setting of trauma (tHO). HO has undergone intense investigation, especially over the last 50 years, as awareness has increased around improving clinical technologies and incidence, such as with ongoing wartime conflicts. Current treatments for tHO and FOP remain prophylactic and include NSAIDs and glucocorticoids, respectively, whereas other proposed therapeutic modalities exhibit prohibitive risk profiles. Contemporary studies have elucidated mechanisms behind tHO and FOP and have described new distinct niches independent of inflammation that regulate ectopic bone formation. These investigations have propagated a paradigm shift in the approach to treatment and management of a historically difficult surgical problem, with ongoing clinical trials and promising new targets.
Collapse
Affiliation(s)
- Charles D Hwang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Massachusetts General Hospital, Harvard University, Boston, Massachusetts, USA
| | - Chase A Pagani
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Johanna H Nunez
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Masnsen Cherief
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Balram Kadaikal
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Heeseog Kang
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ashish R Chowdary
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nicole Patel
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Benjamin Levi
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
7
|
Sun X, Liu Y. Matrix Metalloproteinase-10 in Kidney Injury Repair and Disease. Int J Mol Sci 2022; 23:2131. [PMID: 35216251 PMCID: PMC8877639 DOI: 10.3390/ijms23042131] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
Matrix metalloproteinase-10 (MMP-10) is a zinc-dependent endopeptidase with the ability to degrade a broad spectrum of extracellular matrices and other protein substrates. The expression of MMP-10 is induced in acute kidney injury (AKI) and chronic kidney disease (CKD), as well as in renal cell carcinoma (RCC). During the different stages of kidney injury, MMP-10 may exert distinct functions by cleaving various bioactive substrates including heparin-binding epidermal growth factor (HB-EGF), zonula occludens-1 (ZO-1), and pro-MMP-1, -7, -8, -9, -10, -13. Functionally, MMP-10 is reno-protective in AKI by promoting HB-EGF-mediated tubular repair and regeneration, whereas it aggravates podocyte dysfunction and proteinuria by disrupting glomerular filtration integrity via degrading ZO-1. MMP-10 is also involved in cancerous invasion and emerges as a promising therapeutic target in patients with RCC. As a secreted protein, MMP-10 could be detected in the circulation and presents an inverse correlation with renal function. Due to the structural similarities between MMP-10 and the other MMPs, development of specific inhibitors targeting MMP-10 is challenging. In this review, we summarize our current understanding of the role of MMP-10 in kidney diseases and discuss the potential mechanisms of its actions.
Collapse
Affiliation(s)
- Xiaoli Sun
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
- Department of Pathology, School of Medicine, University of Pittsburgh, S405 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| |
Collapse
|