1
|
Liao Q, Huang L, Cai F, Luo W, Li M, Yang J, Tang B, Xiao X, Yan X, Zheng J. Metabolomics perspectives into the co-exposure effect of polycyclic aromatic hydrocarbons and metals on renal function: A meet-in-the-middle approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:170975. [PMID: 38360308 DOI: 10.1016/j.scitotenv.2024.170975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/01/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Studies on the dose effects of kidney impairment and metabolomes in co-exposure to polycyclic aromatic hydrocarbons (PAHs) and metals are limited. We aimed to identify overall associations and metabolic perturbations in 130 participants (53 petrochemical workers and 77 controls) exposed to a PAHs-metals mixture in Southern China. The urinary 7 hydroxylated PAHs and 15 metal(loid)s were determined, and serum creatinine, beta-2 microglobulin, and estimated glomerular filtration rate were health outcomes. The liquid chromatography-mass spectrometry-based method was applied to serum metabolomics. Generalized weighted quantile sum (gWQS) regressions were used to estimate the overall dose-response relationships, and pathway analysis, "meet-in-the-middle" approach, and mediation effect analyses were conducted to identify potential metabolites and biological mechanisms linking exposure with nephrotoxic effects. Our results indicated that renal function reduction was associated with a PAHs-metals mixture in a dose-dependent manner, and 1-hydroxynaphthalene and copper were the most predominant contributors among the two families of pollutants. Furthermore, the metabolic disruptions associated with the early onset of kidney impairment induced by the combination of PAHs and metals encompassed pathways such as phenylalanine-tyrosine-tryptophan biosynthesis, phenylalanine metabolism, and alpha-linolenic acid metabolism. In addition, the specifically identified metabolites demonstrated excellent potential as bridging biomarkers connecting the reduction in renal function with the mixture of PAHs and metals. These findings shed light on understanding the overall associations and metabolic mechanism of nephrotoxic effects of co-exposure to PAHs and metals.
Collapse
Affiliation(s)
- Qilong Liao
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Lulu Huang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China
| | - Fengshan Cai
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Weikeng Luo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
| | - Min Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Juanjuan Yang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China
| | - Bin Tang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Xinyi Xiao
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Xiao Yan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
| | - Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China
| |
Collapse
|
2
|
Wu K, Chen L, Kong Y, Zhuo J, Sun Q, Chang J. The association between serum copper concentration and prevalence of diabetes among US adults with hypertension (NHANES 2011-2016). J Cell Mol Med 2024; 28:e18270. [PMID: 38568081 PMCID: PMC10989603 DOI: 10.1111/jcmm.18270] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/17/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024] Open
Abstract
The objective of this study was to examine the association between the serum copper concentration and the prevalence of diabetes among US adults with hypertension using the data from the National Health and Nutrition Examination Survey (NHANES). The study population was selected from adults aged over 20 years old in the three survey cycles of NHANES from 2011 to 2016. Logistic regression model analyses were applied to determine the independent risky effect of copper to the prevalence of diabetes. Also, a restricted cubic spline (RCS) model was performed to explore the potential nonlinear association between serum copper concentration and the prevalence of diabetes. A total of 1786 subjects (742 cases and 1044 controls) were included, and 924 were men (51.7%), and 742 (41.5%) were diabetic. Compared with non-diabetic individuals, the concentration of serum copper in diabetic patients with hypertension was higher. After adjusting for age, sex, race, education, marital status, body mass index (BMI), family poverty income ratio (PIR), smoking, alcohol drinking, physical activity, systolic blood pressure (SBP), diastolic blood pressure (DBP), and hyperlipidemia, the highest quartile of serum copper concentration significantly increased the risk of diabetes as compared with the lowest quartile (OR: 1.38, 95% CI: 1.01-1.92, ptrend = 0.036). The results of RCS analysis showed significant non-linear relationship between serum copper concentration and prevalence of diabetes (p-non-linear = 0.010). This study finds that serum copper concentration are significantly associated with risk of diabetes in hypertensive patients, which suggests copper as an important risk factor of diabetes development.
Collapse
Affiliation(s)
- Kaiming Wu
- Department of Chinese MedicineThe Second Affiliated Hospital of Guangdong Medical UniversityGuangdongChina
- Department of Chinese MedicineQingdao West Coast New Area People's HospitalQingdaoChina
| | - Lixia Chen
- Department of Chinese MedicineQingdao West Coast New Area People's HospitalQingdaoChina
| | - Yanyan Kong
- Rehabilitation Medicine DepartmentQingdao West Coast New Area People's HospitalQingdaoChina
| | - Jian‐Feng Zhuo
- Geriatrics DepartmentThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Qiu Sun
- Surgery Teaching and Research OfficeHeilongjiang University of Chinese MedicineHarbinChina
| | - Jianfei Chang
- Department of Chinese MedicineThe Second Affiliated Hospital of Guangdong Medical UniversityGuangdongChina
| |
Collapse
|
3
|
Yu Y, Meng W, Kuang H, Chen X, Zhu X, Wang L, Tan H, Xu Y, Ding P, Xiang M, Hu G, Zhou Y, Dong GH. Association of urinary exposure to multiple metal(loid)s with kidney function from a national cross-sectional study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163100. [PMID: 37023822 DOI: 10.1016/j.scitotenv.2023.163100] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Arsenic (As), cadmium (Cd) and copper (Cu) are hazardous for kidney function, while the effects of selenium (Se) and zinc (Zn) were unexplored for the narrow safe range of intake. Interactions exists between these multiple metal/metalloid exposures, but few studies have investigated the effects. METHODS A cross-sectional survey was performed among 2210 adults across twelve provinces in China between 2020 and 2021. Urinary As, Cd, Cu, Se and Zn were measured using inductively coupled plasma-mass spectrometry (ICP-MS). Serum creatinine (Scr) and N-acetyl-beta-D glucosaminidases (urine NAG) were quantified in serum and urine, respectively. Kidney function was evaluated by the estimated glomerular filtration rate (eGFR). We employed logistic regression and Bayesian kernel machine regression (BKMR) models to explore the individual and joint effects of urinary metals/metalloids on the risk of impaired renal function (IRF) or chronic kidney disease (CKD), respectively. RESULTS Association was found between As (OR = 1.24, 95 % CI: 1.03, 1.48), Cd (OR = 1.65, 95 % CI: 1.35, 2.02), Cu (OR = 1.90, 95 % CI: 1.59, 2.29), Se (OR = 1.51, 95 % CI: 1.24, 1.85) and Zn (OR = 1.33, 95 % CI: 1.09, 1.64) and the risk of CKD. Moreover, we observed association between As (OR = 1.18, 95 % CI: 1.07, 1.29), Cu (OR = 1.14, 95 % CI: 1.04, 1.25), Se (OR = 1.15, 95 % CI: 1.06, 1.26) and Zn (OR = 1.12, 95 % CI: 1.02, 1.22) and the risk of IRF. Additionally, it was found that Se exposure may strength the association of urinary As, Cd and Cu with IRF. Furthermore, it is worth noting that Se and Cu contributed greatest to the inverse association in IRF and CKD, respectively. CONCLUSION Our findings suggested that metal/metalloid mixtures were associated with kidney dysfunction, Se and Cu were inverse factors. Additionally, interactions between them may affect the association. Further studies are needed to assess the potential risks for metal/metalloid exposures.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, PR China.
| | - Wenjie Meng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, PR China
| | - Hongxuan Kuang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, PR China
| | - Xichao Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, PR China
| | - Xiaohui Zhu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, PR China
| | - Lebing Wang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Haiping Tan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, PR China
| | - Yujie Xu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, PR China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, PR China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, PR China
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, PR China; Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China.
| |
Collapse
|
4
|
Guo YS, Zuo TT, Chen AZ, Wang Z, Jin HY, Wei F, Li P, Ma SC. Progress in quality control, detection techniques, speciation and risk assessment of heavy metals in marine traditional Chinese medicine. Chin Med 2023; 18:73. [PMID: 37328891 DOI: 10.1186/s13020-023-00776-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/25/2023] [Indexed: 06/18/2023] Open
Abstract
Marine traditional Chinese medicines (MTCMs) hold a significant place in the rich cultural heritage in China. It plays an irreplaceable role in addressing human diseases and serves as a crucial pillar for the development of China's marine economy. However, the rapid pace of industrialization has raised concerns about the safety of MTCM, particularly in relation to heavy metal pollution. Heavy metal pollution poses a significant threat to the development of MTCM and human health, necessitating the need for detection analysis and risk assessment of heavy metals in MTCM. In this paper, the current research status, pollution situation, detection and analysis technology, removal technology and risk assessment of heavy metals in MTCM are discussed, and the establishment of a pollution detection database and a comprehensive quality and safety supervision system for MTCM is proposed. These measures aim to enhance understanding of heavy metals and harmful elements in MTCM. It is expected to provide a valuable reference for the control of heavy metals and harmful elements in MTCM, as well as the sustainable development and application of MTCM.
Collapse
Affiliation(s)
- Yuan-Sheng Guo
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 102629, China
- China Pharmaceutical University, Nanjing, 211198, China
| | - Tian-Tian Zuo
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 102629, China
| | - An-Zhen Chen
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Marine Chinese Medicine, Qingdao Institute for Food and Drug Control, Qingdao, 266073, China
| | - Zhao Wang
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 102629, China
| | - Hong-Yu Jin
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 102629, China
| | - Feng Wei
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 102629, China
| | - Ping Li
- China Pharmaceutical University, Nanjing, 211198, China
| | - Shuang-Cheng Ma
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 102629, China.
| |
Collapse
|
5
|
Gembillo G, Labbozzetta V, Giuffrida AE, Peritore L, Calabrese V, Spinella C, Stancanelli MR, Spallino E, Visconti L, Santoro D. Potential Role of Copper in Diabetes and Diabetic Kidney Disease. Metabolites 2022; 13:17. [PMID: 36676942 PMCID: PMC9866181 DOI: 10.3390/metabo13010017] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/25/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
Copper is a fundamental element for the homeostasis of the body. It is the third most abundant essential transition metal in humans. Changes in the concentration of copper in the blood are responsible for numerous diseases affecting various organs, including the heart, brain, kidneys, and liver. Even small copper deficiencies can lead to the development and progression of several pathologies. On the other hand, excessive exposure to copper can cause toxicity in many human organs, leading to various systemic alterations. In the kidney, increased copper concentration in the blood can cause deposition of this element in the kidneys, leading to nephrotoxicity. One of the most interesting aspects of copper balance is its influence on diabetes and the progression of its complications, such as Diabetic Kidney Disease (DKD). Several studies have shown a close relationship between copper serum levels and altered glycemic control. An imbalance of copper can lead to the progression of diabetes-related complications and impaired antioxidant homeostasis. A high Zinc/Copper (Zn/Cu) ratio is associated with improved renal function and reduced risk of poor glycemic control in patients with type two diabetes mellitus (T2DM). Furthermore, the progression of DKD appears to be related to the extent of urinary copper excretion, while regulation of adequate serum copper concentration appears to prevent and treat DKD. The aim of this review is to evaluate the possible role of copper in DKD patients.
Collapse
Affiliation(s)
- Guido Gembillo
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy
| | - Vincenzo Labbozzetta
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Alfio Edoardo Giuffrida
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Luigi Peritore
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Vincenzo Calabrese
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Claudia Spinella
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Maria Rita Stancanelli
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Eugenia Spallino
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Luca Visconti
- Unit of Nephrology and Dialysis, Ospedali Riuniti Villa Sofia Cervello, University of Palermo, 90146 Palermo, Italy
| | - Domenico Santoro
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
6
|
Lu YJ, Wu YJ, Chen LJ, Ko BS, Chang TC, Wu YJ, Liang SM, Jan YJ, Liou JY. Reduced Expression of Metallothionein-I/II in Renal Proximal Tubules Is Associated with Advanced Chronic Kidney Disease. Toxins (Basel) 2021; 13:toxins13080568. [PMID: 34437439 PMCID: PMC8402552 DOI: 10.3390/toxins13080568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/02/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
Chronic kidney disease (CKD) is a commonly occurring complex renal syndrome that causes overall mortality in many diseases. The clinical manifestations of CKD include renal tubulointerstitial fibrosis and loss of renal function. Metallothionein-I/II (MT-I/II) is potentially expressed in the liver and kidney, and possesses antioxidant and metal detoxification properties. However, whether MT-I/II expression is associated with the prognosis of nephropathy remains unknown. In this study, we investigated the MT-I/II level in human CKD, using immunohistochemistry. MT-I/II is located on the proximal tubules and is notably reduced in patients with CKD. MT-I/II expression was significantly correlated with the functional and histological grades of CKD. In an aristolochic acid (AAI)-induced nephropathy mouse model, MT-I/II was abundantly increased after AAI injection for 7 days, but decreased subsequently compared to that induced in the acute phase when injected with AAI for 28 days. Furthermore, we found that ammonium pyrrolidinedithiocarbamate (PDTC) restored AAI-induced MT-I/II reduction in HK2 cells. The injection of PDTC ameliorated AAI-induced renal tubulointerstitial fibrosis and reduced the concentrations of blood urea nitrogen and creatinine in mouse sera. Taken together, our results indicate that MT-I/II reduction is associated with advanced CKD, and the retention of renal MT-I/II is a potential therapeutic strategy for CKD.
Collapse
Affiliation(s)
- Yi-Jhu Lu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Taiwan; (Y.-J.L.); (T.-C.C.); (Y.-J.W.); (S.-M.L.)
| | - Ya-Ju Wu
- Department of Pathology, Chi Mei Medical Center, Liouying, Tainan 736, Taiwan;
| | - Lu-Jen Chen
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan; (L.C.-J.); (Y.-J.J.)
| | - Bor-Sheng Ko
- Department of Hematological Oncology, National Taiwan University Cancer Center, Taipei 106, Taiwan;
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Tzu-Ching Chang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Taiwan; (Y.-J.L.); (T.-C.C.); (Y.-J.W.); (S.-M.L.)
| | - Yi-Ju Wu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Taiwan; (Y.-J.L.); (T.-C.C.); (Y.-J.W.); (S.-M.L.)
| | - Shu-Man Liang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Taiwan; (Y.-J.L.); (T.-C.C.); (Y.-J.W.); (S.-M.L.)
| | - Yee-Jee Jan
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan; (L.C.-J.); (Y.-J.J.)
| | - Jun-Yang Liou
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Taiwan; (Y.-J.L.); (T.-C.C.); (Y.-J.W.); (S.-M.L.)
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- Correspondence: ; Tel.: +886-37-246166 (ext. 38309)
| |
Collapse
|
7
|
Elmorsy E, Al-Ghafari A, Al Doghaither H, Ghulam J. Effects of environmental metals on mitochondrial bioenergetics of the CD-1 mice pancreatic beta-cells. Toxicol In Vitro 2020; 70:105015. [PMID: 33038468 DOI: 10.1016/j.tiv.2020.105015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/19/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Environmental metals are believed to have diabetogenic effects without any clear underlying mechanisms. The study investigated the effects of metals, lead (Pb), mercury (Hg), cadmium (Cd), and molybdenum (Mo), on the bioenergetics of isolated pancreatic β-cells from CD-1 mice via different functional and structural techniques. The tested metals caused significant decrease in ATP production in concentration and exposure duration-dependent pattern; Cd was the most potent cytotoxic metal. In ATP assay estimated effective concentration 50 (EC50) (25, 40, 20, and 100 μM for Pb, Hg, Cd, and Mo, respectively), the metals also significantly inhibited the glucose-stimulated insulin secretion (GSIS), mitochondrial complexes activity, mitochondrial membranes potential, and oxygen consumption rates of the treated cells with parallel increases in their lactate production and in the mitochondrial swelling and permeation of their inner mitochondrial membranes to potassium (K+) and hydrogen (H+) ions. In addition, Cd, Pb, and Hg produced significant increases in mitochondrial membrane fluidity (MMF) with significant decreases in saturated/unsaturated fatty acid ratios. In 10 μM concentration, away from Mo, the three metals showed inhibitory effects on the mitochondrial functions to variable degrees. Only Cd showed significant effect on MMF and fatty acid ratios at a concentration of 10 μM. In conclusion, the tested metals significantly affected the bioenergetics of the pancreatic β-cells with significant effect on GSIS. Cd showed the most significant functional and structural effects on their mitochondria followed by Pb, then Hg, while Mo was almost safe up to 10 μM concentration. Hence, bioenergetic mitochondrial disruption can be considered as an underlying mechanism of the diabetogenic effects of the tested metals.
Collapse
Affiliation(s)
- Ekramy Elmorsy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Pathology Department, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia.
| | - Ayat Al-Ghafari
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Cancer Metabolism and Epigenetics Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Experimental Biochemistry Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia; Cancer and Mutagenesis Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huda Al Doghaither
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jihan Ghulam
- General Education Department, Dar Al-Hekma University, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Sekovanić A, Jurasović J, Piasek M. Metallothionein 2A gene polymorphisms in relation to diseases and trace element levels in humans. Arh Hig Rada Toksikol 2020; 71:27-47. [PMID: 32597135 PMCID: PMC7837243 DOI: 10.2478/aiht-2020-71-3349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/01/2019] [Accepted: 03/01/2020] [Indexed: 02/08/2023] Open
Abstract
Human metallothioneins are a superfamily of low molecular weight intracellular proteins, whose synthesis can be induced by essential elements (primarily Zn and Cu), toxic elements and chemical agents, and stress-producing conditions. Of the four known isoforms in the human body MT2 is the most common. The expression of metallothioneins is encoded by a multigene family of linked genes and can be influenced by single nucleotide polymorphisms (SNPs) in these genes. To date, 24 SNPs in the MT2A gene have been identified with the incidence of about 1 % in various population groups, and three of them were shown to affect physiological and pathophysiological processes. This review summarises current knowledge about these three SNPs in the MT2A gene and their associations with element concentrations in the body of healthy and diseased persons. The most investigated SNP is rs28366003 (MT2A -5 A/G). Reports associate it with longevity, cancer (breast, prostate, laryngeal, and in paranasal sinuses), and chronic renal disease. The second most investigated SNP, rs10636 (MT2A +838G/C), is associated with breast cancer, cardiovascular disease, and type 2 diabetes. Both are also associated with several metal/metalloid concentrations in the organism. The third SNP, rs1610216 (MT2A -209A/G), has been studied for association with type 2 diabetes, cardiomyopathy, hyperglycaemia, and Zn concentrations. Metallothionein concentrations and MT2A polymorphisms have a potential to be used as biomarkers of metal exposure and clinical markers of a number of chronic diseases. This potential needs to be studied and verified in a large number of well-defined groups of participants (several hundreds and thousands) with a focus on particular physiological or pathological condition and taking into consideration other contributing factors, such as environmental exposure and individual genetic and epigenetic makeup.
Collapse
Affiliation(s)
- Ankica Sekovanić
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health,Zagreb, Croatia
| | - Jasna Jurasović
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health,Zagreb, Croatia
| | - Martina Piasek
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health,Zagreb, Croatia
| |
Collapse
|
9
|
Liu H, Liang Z, Wang F, Zhou C, Zheng X, Hu T, He X, Wu X, Lan P. Exosomes from mesenchymal stromal cells reduce murine colonic inflammation via a macrophage-dependent mechanism. JCI Insight 2019; 4:131273. [PMID: 31689240 DOI: 10.1172/jci.insight.131273] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Conventional treatments for inflammatory bowel disease (IBD) have multiple potential side effects. Therefore, alternative treatments are desperately needed. This work demonstrated that systemic administration of exosomes from human bone marrow-derived mesenchymal stromal cells (MSC-Exos) substantially mitigated colitis in various models of IBD. MSC-Exos treatment downregulated inflammatory responses, maintained intestinal barrier integrity, and polarized M2b macrophages but did not favor intestinal fibrosis. Mechanistically, infused MSC-Exos acted mainly on colonic macrophages, and macrophages from colitic colons acquired obvious resistance to inflammatory restimulation when prepared from mice treated with MSC-Exos versus untreated mice. The beneficial effect of MSC-Exos was blocked by macrophage depletion. Also, the induction of IL-10 production from macrophages was partially involved in the beneficial effect of MSC-Exos. MSC-Exos were enriched in proteins involved in regulating multiple biological processes associated with the anticolitic benefit of MSC-Exos. Particularly, metallothionein-2 in MSC-Exos was required for the suppression of inflammatory responses. Taken together, MSC-Exos are critical regulators of inflammatory responses and may be promising candidates for IBD treatment.
Collapse
Affiliation(s)
- Huashan Liu
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Zhenxing Liang
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Fengwei Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Chi Zhou
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaobin Zheng
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tuo Hu
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaowen He
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xianrui Wu
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Ping Lan
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
10
|
Zeng HL, Liu CWB, Lu J, Wang X, Cheng L. Analysis of urinary trace element levels in general population of Wuhan in central China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:27823-27831. [PMID: 31342348 DOI: 10.1007/s11356-019-05973-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Trace element distribution in the human body varies across regions and countries due to their different living environment and lifestyle. Thus, it is of great significance to investigate the reference level of trace element in a specific population. Wuhan is the largest metropolitan area in central China with highly developed heavy industries. This study aimed at determining the reference urinary distribution in general populations of Wuhan for nine trace elements (Cr, Mn, Cu, As, Se, Cd, Hg, Tl, Pb), and analyzed their associations with age, sex, and the kidney function. In total, 226 healthy adults not exposed to these trace elements were recruited, and the first-morning urine specimens were analyzed by using ICP-MS-based method. Our results showed higher urinary levels for As and Cd in Wuhan population when compared with other countries, while other element levels were almost equivalent. Sex difference existed for urinary Cu, Mn, As, Tl, and Pb. And urinary Cd, Tl, and Pb levels were associated with the glomerular filtration rate. Almost all these urinary elements showed significant inter-correlations, especially for Cu but except for Mn. This study provides systematic information regarding urinary trace element levels in residents of Wuhan in central China, and shall be of importance for future environmental and occupational biomonitoring.
Collapse
Affiliation(s)
- Hao-Long Zeng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Chang-Wen-Bo Liu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jie Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xu Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
11
|
Chirumbolo S, Bjørklund G. Chrysin and baicalin in diabetic nephropathy. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 51:156-157. [PMID: 28262431 DOI: 10.1016/j.etap.2017.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 02/20/2017] [Indexed: 06/06/2023]
Affiliation(s)
- Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Strada Le Grazie 9, 37134 Verona, Italy.
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| |
Collapse
|