1
|
P M MM, Farheen S, Sharma RM, Shahi MH. Differential regulation of Shh-Gli1 cell signalling pathway on homeodomain transcription factors Nkx2.2 and Pax6 during the medulloblastoma genesis. Mol Biol Rep 2024; 51:1096. [PMID: 39460795 DOI: 10.1007/s11033-024-10026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Medulloblastoma is a pediatric malignant brain tumor associated with an aberrantly activated Shh pathway. The Shh pathway acts via downstream effector molecules, including Pax6 and Nkx2.2. Transcription factor Nkx2.2 plays crucial roles during early embryonic patterning and development. In this study, we aimed to determine the role of transcription factor Nkx2.2 in medulloblastoma development. METHODS AND RESULTS Here, whole transcriptome levels and suppressive effect of transcription factor Nkx2.2 on Pax6 were assessed using one normal human brain and three surgically removed medulloblastoma samples. Additionally, protein levels of Shh, Gli1, Pax6, and Nkx2.2 and co-expression patterns of Pax6 and Nkx2.2 were assessed in 14 medulloblastoma samples. Quantitative reverse transcription-polymerase chain reaction revealed the suppressive effect of Nkx2.2 on Pax6. D283 cells were treated with the Shh pathway activator, SAG, and Gli1 inhibitor, GANT61, which revealed Pax6-Nkx2.2 regulation. Increased cell proliferation was observed in D283 cells transfected with Nkx2.2 small interfering RNA. Moreover, mRNA expression levels of Shh, Pax6, Nkx2.2, and Gli1 were assessed in Daoy cells transfected with Gli1 and Nkx2.2 small interfering RNAs using quantitative reverse transcription-polymerase chain reaction. Pax6 levels were increased in Nkx2.2 siRNA-transfected cells. CONCLUSIONS Aberrantly activated Shh pathway leads to the ectopic expression of Pax6 in granular cells, inducing medulloblastoma development. Moreover, Nkx2.2 transcription factor acts as a suppressor of Pax6 during medulloblastoma development and maintenance. Overall, this study provides novel insights for the development of effective therapeutic strategies and suggests potential targets for medulloblastoma.
Collapse
Affiliation(s)
- Mubeena Mariyath P M
- Interdisciplinary Brain Research Centre, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002, India
| | - Shirin Farheen
- Interdisciplinary Brain Research Centre, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002, India
| | - Raman Mohan Sharma
- Department of Neurosurgery, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002, India
| | - Mehdi H Shahi
- Interdisciplinary Brain Research Centre, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
2
|
Bi SS, Talukder M, Sun XT, Lv MW, Ge J, Zhang C, Li JL. Cerebellar injury induced by cadmium via disrupting the heat-shock response. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22550-22559. [PMID: 36301385 DOI: 10.1007/s11356-022-23771-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) is a food contaminant that poses serious threats to animal health, including birds. It is also an air pollutant with well-known neurotoxic effects on humans. However, knowledge on the neurotoxic effects of chronic Cd exposure on chicken is limited. Thus, this study assessed the neurotoxic effects of chronic Cd on chicken cerebellum. Chicks were exposed to 0 (control), 35 (low), and 70 (high) mg/kg of Cd for 90 days, and the expression of genes related to the heat-shock response was investigated. The chickens showed clinical symptoms of ataxia, and histopathology revealed that Cd exposure decreased the number of Purkinje cells and induced degeneration of Purkinje cells with pyknosis, and some dendrites were missing. Moreover, Cd exposure increased the expression of heat-shock factors, HSF1, HSF2, and HSF3, and heat-shock proteins, HSP60, HSP70, HSP90, and HSP110. These changes indicate that HSPs improve the tolerance of the cerebellum to Cd. Conversely, the expressions of HSP10, HSP25, and HSP40 were decreased significantly, which indicated that Cd inhibits the expression of small heat-shock proteins. However, HSP27 and HSP47 were upregulated following low-dose Cd exposure, but downregulated under high-dose Cd exposure. This work sheds light on the toxic effects of Cd on the cerebellum, and it may provide evidence for health risks posed by Cd. Additionally, this work also identified a novel target of Cd exposure in that Cd induces cerebellar injury by disrupting the heat-shock response. Cd can be absorbed into chicken's cerebellum through the food chain, which eventually caused cerebellar injury. This study provided a new insight that chronic Cd-induced neurotoxicity in the cerebellum is associated with alterations in heat-shock response-related genes, which indicated that Cd through disturbing heat-shock response induced cerebellar injury.
Collapse
Affiliation(s)
- Shao-Shuai Bi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, People's Republic of China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Xue-Tong Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Mei-Wei Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
3
|
Martin Molinero GD, Boldrini GG, Pérez Chaca MV, Moyano MF, Armonelli Fiedler S, Giménez MS, Gómez NN, López PHH, Álvarez SM. A soybean based-diet prevents Cadmium access to rat cerebellum, maintaining trace elements homeostasis and avoiding morphological alterations. Biometals 2023; 36:67-96. [PMID: 36374356 DOI: 10.1007/s10534-022-00462-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022]
Abstract
Cadmium (Cd) is one of the most dangerous heavy metals that exists. A prolonged exposure to Cd causes toxic effects in a variety of tissues, including Central Nervous System (CNS), where it can penetrate the Blood Brain Barrier (BBB). Cd exposure has been linked to neurotoxicity and neurodegenerative diseases. Soy isoflavones have a strong antioxidant capacity, and they have been shown to have positive effects on cognitive function in females. However, the mechanisms underlying Cd neurotoxicity remain completely unresolved. The purpose of this study was to characterize the potential protective effect of a soy-based diet vs. a casein-based diet against Cd toxicity in rat cerebellum. Female Wistar rats were fed with casein (Cas) or soybean (So) as protein sources for 60 days. Simultaneously, half of the animals were administered either 15 ppm of Cadmium (CasCd and SoCd groups) in water or regular tap water as control (Cas and So groups). We analyzed Cd exposure effects on trace elements, oxidative stress, cell death markers, GFAP expression and the histoarchitecture of rat cerebellum. We found that Cd tissue content only augmented in the Cas intoxicated group. Zn, Cu, Mn and Se levels showed modifications among the different diets. Expression of Nrf-2 and the activities of CAT and GPx decreased in Cas and So intoxicated groups,while 3-NT expression increased only in the CasCd group. Morphometry analyses revealed alterations in the purkinje and granular cells morphology, decreased number of granular cells and reduced thickness of the granular layer in Cd-intoxicated rats, whereas no alterations were observed in animals under a So diet. In addition, mRNA expression of apoptotic markers BAX/Bcl-2 ratio and p53 expression increased only in the CasCd group, a finding confirmed by positive TUNEL staining in the cerebellum granule cell layer in the same group. Also, Cd intoxication elicited overexpression of GFAP by astrocytes, which was prevented by soy. White matter alterations were only subtle and characterized by intramyelinic edema in the CasCd group. Overall, these results unmask an irreversible toxic effect of a subchronic Cd intoxication on the cerebellum, and identify a protective role by a soy-based diet with potential as a therapeutic strategy for those individuals exposed to this dangerous environmental contaminant.
Collapse
Affiliation(s)
- Glenda Daniela Martin Molinero
- Laboratory of Nutrition, Environment and Cell Metabolism, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, Argentina and IMIBIO-SL CONICET, San Luis, Argentina
- IMIBIO-SL CONICET, San Luis, Argentina
| | - Gabriel Giezi Boldrini
- Laboratory of Nutrition, Environment and Cell Metabolism, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, Argentina and IMIBIO-SL CONICET, San Luis, Argentina
- IMIBIO-SL CONICET, San Luis, Argentina
| | - María Verónica Pérez Chaca
- Laboratory of Morphophysiology, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina
| | - Mario Franco Moyano
- INQUISAL CONICET, Institute of Chemistry, Analytical Chemistry Area, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina
| | - Samanta Armonelli Fiedler
- Departamento de Química Biológica "Dr Ranwel Caputto"-CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Sofía Giménez
- Laboratory of Nutrition, Environment and Cell Metabolism, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, Argentina and IMIBIO-SL CONICET, San Luis, Argentina
- IMIBIO-SL CONICET, San Luis, Argentina
| | - Nidia Noemí Gómez
- IMIBIO-SL CONICET, San Luis, Argentina
- Laboratory of Morphophysiology, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina
| | - Pablo Héctor Horacio López
- Departamento de Química Biológica "Dr Ranwel Caputto"-CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Silvina Mónica Álvarez
- Laboratory of Nutrition, Environment and Cell Metabolism, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, Argentina and IMIBIO-SL CONICET, San Luis, Argentina.
- IMIBIO-SL CONICET, San Luis, Argentina.
| |
Collapse
|
4
|
Ruczaj A, Brzóska MM. Environmental exposure of the general population to cadmium as a risk factor of the damage to the nervous system: A critical review of current data. J Appl Toxicol 2023; 43:66-88. [PMID: 35304765 PMCID: PMC10084305 DOI: 10.1002/jat.4322] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/14/2022] [Accepted: 03/15/2022] [Indexed: 12/16/2022]
Abstract
Nowadays, more and more attention has been focused on the risk of the neurotoxic action of cadmium (Cd) under environmental exposure. Due to the growing incidence of nervous system diseases, including neurodegenerative changes, and suggested involvement of Cd in their aetiopathogenesis, this review aimed to discuss critically this element neurotoxicity. Attempts have been made to recognize at which concentrations in the blood and urine Cd may increase the risk of damage to the nervous system and compare it to the risk of injury of other organs and systems. The performed overview of the available literature shows that Cd may have an unfavourable impact on the human's nervous system at the concentration >0.8 μg Cd/L in the urine and >0.6 μg Cd/L in the blood. Because such concentrations are currently noted in the general population of industrialized countries, it can be concluded that environmental exposure to this xenobiotic may create a risk of damage to the nervous system and be involved in the aetiopathogenesis of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, as well as worsening cognitive and behavioural functions. The potential mechanism of Cd neurotoxicity consists in inducing oxidative stress, disrupting the activity of enzymes essential to the proper functioning of the nervous system and destroying the homoeostasis of bioelements in the brain. Thus, further studies are necessary to recognize accurately both the risk of nervous system damage in the general population due to environmental exposure to Cd and the mechanism of this action.
Collapse
Affiliation(s)
- Agnieszka Ruczaj
- Department of ToxicologyMedical University of BialystokBialystokPoland
| | | |
Collapse
|
5
|
Ma C, Hu K, Ullah I, Zheng QK, Zhang N, Sun ZG. Molecular Mechanisms Involving the Sonic Hedgehog Pathway in Lung Cancer Therapy: Recent Advances. Front Oncol 2022; 12:729088. [PMID: 35433472 PMCID: PMC9010822 DOI: 10.3389/fonc.2022.729088] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 03/03/2022] [Indexed: 12/09/2022] Open
Abstract
According to the latest statistics from the International Agency for Research on Cancer (IARC), lung cancer is one of the most lethal malignancies in the world, accounting for approximately 18% of all cancer-associated deaths. Yet, even with aggressive interventions for advanced lung cancer, the five-year survival rate remains low, at around 15%. The hedgehog signaling pathway is highly conserved during embryonic development and is involved in tissue homeostasis as well as organ development. However, studies have documented an increasing prevalence of aberrant activation of HH signaling in lung cancer patients, promoting malignant lung cancer progression with poor prognostic outcomes. Inhibitors targeting the HH pathway have been widely used in tumor therapy, however, they still cannot avoid the occurrence of drug resistance. Interestingly, natural products, either alone or in combination with chemotherapy, have greatly improved overall survival outcomes for lung cancer patients by acting on the HH signaling pathway because of its unique and excellent pharmacological properties. In this review, we elucidate on the underlying molecular mechanisms through which the HH pathway promotes malignant biological behaviors in lung cancer, as well as the potential of inhibitors or natural compounds in targeting HH signaling for clinical applications in lung cancer therapy.
Collapse
Affiliation(s)
- Chao Ma
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Kang Hu
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Irfan Ullah
- Department of Surgery, Khyber Medical University Peshawar, Peshawar, Pakistan
| | - Qing-Kang Zheng
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Nan Zhang
- Breast Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhi-Gang Sun
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
6
|
Patwa J, Flora SJS. Heavy Metal-Induced Cerebral Small Vessel Disease: Insights into Molecular Mechanisms and Possible Reversal Strategies. Int J Mol Sci 2020; 21:ijms21113862. [PMID: 32485831 PMCID: PMC7313017 DOI: 10.3390/ijms21113862] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
Heavy metals are considered a continuous threat to humanity, as they cannot be eradicated. Prolonged exposure to heavy metals/metalloids in humans has been associated with several health risks, including neurodegeneration, vascular dysfunction, metabolic disorders, cancer, etc. Small blood vessels are highly vulnerable to heavy metals as they are directly exposed to the blood circulatory system, which has comparatively higher concentration of heavy metals than other organs. Cerebral small vessel disease (CSVD) is an umbrella term used to describe various pathological processes that affect the cerebral small blood vessels and is accepted as a primary contributor in associated disorders, such as dementia, cognitive disabilities, mood disorder, and ischemic, as well as a hemorrhagic stroke. In this review, we discuss the possible implication of heavy metals/metalloid exposure in CSVD and its associated disorders based on in-vitro, preclinical, and clinical evidences. We briefly discuss the CSVD, prevalence, epidemiology, and risk factors for development such as genetic, traditional, and environmental factors. Toxic effects of specific heavy metal/metalloid intoxication (As, Cd, Pb, Hg, and Cu) in the small vessel associated endothelium and vascular dysfunction too have been reviewed. An attempt has been made to highlight the possible molecular mechanism involved in the pathophysiology, such as oxidative stress, inflammatory pathway, matrix metalloproteinases (MMPs) expression, and amyloid angiopathy in the CSVD and related disorders. Finally, we discussed the role of cellular antioxidant defense enzymes to neutralize the toxic effect, and also highlighted the potential reversal strategies to combat heavy metal-induced vascular changes. In conclusion, heavy metals in small vessels are strongly associated with the development as well as the progression of CSVD. Chelation therapy may be an effective strategy to reduce the toxic metal load and the associated complications.
Collapse
|