1
|
Li L, He Z, Shi Y, Sun H, Yuan B, Cai J, Chen J, Long M. Role of epigenetics in mycotoxin toxicity: a review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104154. [PMID: 37209890 DOI: 10.1016/j.etap.2023.104154] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/25/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Mycotoxins can induce cell cycle disorders, cell proliferation, oxidative stress, and apoptosis through pathways such as those associated with MAPK, JAK2/STAT3, and Bcl-w/caspase-3, and cause reproductive toxicity, immunotoxicity, and genotoxicity. Previous studies have explored the toxicity mechanism of mycotoxins from the levels of DNA, RNA, and proteins, and proved that mycotoxins have epigenetic toxicity. To explore the toxic effects and mechanisms of these changes in mycotoxins, this paper summarizes the changes in DNA methylation, non-coding RNA, RNA and histone modification induced by several common mycotoxins (zearalenone, aflatoxin B1, ochratoxin A, deoxynivalenol, T-2 toxin, etc.) based on epigenetic studies. In addition, the roles of mycotoxin-induced epigenetic toxicity in germ cell maturation, embryonic development, and carcinogenesis are highlighted. In summary, this review provides theoretical support for a better understanding of the regulatory mechanism of mycotoxin epigenotoxicity and the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Liuliu Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| | - Ziqi He
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| | - Yang Shi
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| | - Huiying Sun
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| | - Bowei Yuan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| | - Jing Cai
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| | - Jia Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| |
Collapse
|
2
|
Yang H, Cai H, Shan S, Chen T, Zou J, Abudurufu M, Luo H, Lei Y, Ke Z, Zhu Y. Methylation of N6 adenosine-related long noncoding RNA: effects on prognosis and treatment in 'driver-gene-negative' lung adenocarcinoma. Mol Oncol 2023; 17:365-377. [PMID: 36221911 PMCID: PMC9892826 DOI: 10.1002/1878-0261.13323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/25/2022] [Accepted: 10/11/2022] [Indexed: 02/04/2023] Open
Abstract
The improvement of treatment for patients with 'driver-gene-negative' lung adenocarcinoma (LUAD) remains a critical problem to be solved. We aimed to explore the role of methylation of N6 adenosine (m6A)-related long noncoding RNA (lncRNA) in stratifying 'driver-gene-negative' LUAD risk. Patients negative for mutations in EGFR, KRAS, BRAF, HER2, MET, ALK, RET, and ROS1 were identified as 'driver-gene-negative' cases. RNA sequencing was performed in 46 paired tumors and adjacent normal tissues from patients with 'driver-gene-negative' LUAD. Twenty-three m6A regulators and relevant lncRNAs were identified using Pearson's correlation analysis. K-means cluster analysis was used to stratify patients, and a prognostic nomogram was developed. The CIBERSORT and pRRophetic algorithms were employed to quantify the immune microenvironment and chemosensitivity. We identified two clusters highly consistent with the prognosis based on their unique expression profiles for 46 m6AlncRNAs. A risk model constructed from nine m6A lncRNAs could stratify patients into high- and low-risk groups with promising predictive power (C-index = 0.824), and the risk score was an independent prognostic factor. The clusters and risk models were closely related to immune characteristics and chemosensitivity. Additional pan-cancer analysis using the nine m6AlncRNAs showed that the expression of DIO3 opposite strand upstream RNA (DIO3OS) is closely related to the immune/stromal score and tumor stemness in a variety of cancers. Our results show that m6AlncRNAs are a reliable prognostic tool and can aid treatment decision-making in 'driver-gene-negative' LUAD. DIO3OS is associated with the development of various cancers and has potential clinical applications.
Collapse
Affiliation(s)
- Hao‐Shuai Yang
- Department of Thoracic SurgeryThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - He‐Yuan Cai
- Department of Thoracic SurgeryThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Shi‐Chao Shan
- Department of Thoracic SurgeryThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Ting‐Fei Chen
- Department of Thoracic SurgeryThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Jian‐Yong Zou
- Department of Thoracic SurgeryThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Maimaiti Abudurufu
- Department of Thoracic SurgeryThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Hong‐He Luo
- Department of Thoracic SurgeryThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Yi‐Yan Lei
- Department of Thoracic SurgeryThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Zun‐Fu Ke
- Department of Pathology & Institution of Precision MedicineThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Ying Zhu
- Department of RadiologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
3
|
Whole-Transcriptome Analysis of Non-Coding RNA Alteration in Porcine Alveolar Macrophage Exposed to Aflatoxin B1. Toxins (Basel) 2022; 14:toxins14060373. [PMID: 35737034 PMCID: PMC9230535 DOI: 10.3390/toxins14060373] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 11/20/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a type of mycotoxin produced by the fungi Aspergillus flavus and Aspergillus parasiticus and is commonly found in cereals, oils and foodstuffs. In order to understand the toxic effects of AFB1 exposure on Porcine alveolar macrophages (3D4/2 cell), the 3D4/2 cells were exposed to 40 μg/mL AFB1 for 24 h in vitro, and several methods were used for analysis. Edu and TUNEL analysis showed that the proliferation of 3D4/2 cells was significantly inhibited and the apoptosis of 3D4/2 cells was significantly induced after AFB1 exposure compared with that of the control group. Whole-transcriptome analysis was performed to reveal the non-coding RNA alteration in 3D4/2 cells after AFB1 exposure. It was found that the expression of cell-cycle-related and apoptosis-related genes was altered after AFB1 exposure, and lncRNAs and miRNAs were also significantly different among the experimental groups. In particular, AFB1 exposure affected the expression of lncRNAs associated with cellular senescence signaling pathways, such as MSTRG.24315 and MSTRG.80767, as well as related genes, Cxcl8 and Gadd45g. In addition, AFB1 exposure affected the expression of miRNAs associated with immune-related genes, such as miR-181a, miR-331-3p and miR-342, as well as immune-related genes Nfkb1 and Rras2. Moreover, the regulation networks between mRNA-miRNAs and mRNA-lncRNAs were confirmed by the results of RT-qPCR and immunofluorescence. In conclusion, our results here demonstrate that AFB1 exposure impaired proliferation of 3D4/2 cells via the non-coding RNA-mediated pathway.
Collapse
|
4
|
Wang Y, Wang J, Wang C, Chen Y, Chen J. DIO3OS as a potential biomarker of papillary thyroid cancer. Pathol Res Pract 2022; 229:153695. [PMID: 34929602 DOI: 10.1016/j.prp.2021.153695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/01/2021] [Accepted: 11/16/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) is one of the common clinical tumors, where LncRNA plays an important role in tumorigenesis and its development. The purpose of this study was to explore the role of DIO3OS in PTC. METHOD Firstly, this study verified the expression of DIO3OS in PTC through the public database. Then, the differences in DIO3OS expression between the PTC group and paracancerous tissues were verified using the qRT-PCR. A series of in vitro experiments were conducted to verify the function of DIO3OS in PTC, while its involvement in possible pathways was analyzed by the GSEA. The ssGSEA algorithm estimated the immune status using the queue transcriptome graph derived from the TCGA database. Further, the correlation analysis was used to confirm the relationship between DIO3OS and the immune genes. RESULT The results showed that the expression of DIO3OS was low in PTC. The same results were also confirmed by qRT-PCR analysis (P= 0.0077). In vitro, DIO3OS was localized within the cytoplasm and exosomes. Overexpression of DIO3OS hindered the proliferation, invasion, and migration of PTC cells. According to the degree of immune cell infiltration, the tumor group was divided into high immune cell infiltration group, medium immune cell infiltration group, and low immune cell infiltration group. The results showed that the DIO3OS was highly expressed in the high immune cell infiltration group (P < 0.001), which was positively correlated with the immune cell infiltration and also correlated with multiple immune genes. CONCLUSION In summary, this study illustrated the expression pattern of DIO3OS in PTC, which may be involved in the immune-inflammatory pathway. Hence, our results may provide new diagnostic biomarkers and therapeutic targets for PTC.
Collapse
Affiliation(s)
- Ye Wang
- The First Affiliated Hospital of Guangxi Medical University, Department of Gastrointestinal Gland Surgery, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, 530021, Guangxi, China
| | - Junfu Wang
- The First Affiliated Hospital of Nanchang University, Department of General Surgery, Nanchang 330031, China
| | - Congjun Wang
- The First Affiliated Hospital of Guangxi Medical University, Department of Gastrointestinal Gland Surgery, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, 530021, Guangxi, China
| | - Yeyang Chen
- The First People's Hospital of Yulin, Departments of Gastrointestinal Surgery, Yulin, 537000, China
| | - Junqiang Chen
- The First Affiliated Hospital of Guangxi Medical University, Department of Gastrointestinal Gland Surgery, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, 530021, Guangxi, China.
| |
Collapse
|
5
|
Zhang J, Jiang P, Tu Y, Li N, Huang Y, Jiang S, Kong W, Yuan R. Identification and validation of long non-coding RNA associated ceRNAs in intrauterine adhesion. Bioengineered 2021; 13:1039-1048. [PMID: 34968168 PMCID: PMC8805920 DOI: 10.1080/21655979.2021.2017578] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intrauterine adhesion (IUA) is an endometrial fibrotic disease with unclear pathogenesis. Increasing evidence suggested the important role of competitive endogenous RNA (ceRNA) in diseases. This study aimed to identify and verify the key long non-coding RNA (lncRNA) associated-ceRNAs in IUA. The lncRNA/mRNA expression file was obtained by transcriptome sequencing of IUA and normal samples. The microRNAs expression date was downloaded from the Gene Expression Omnibus database. Differential expressions of mRNAs, lncRNAs and miRNAs were analyzed using the DESeq2 (2010) R package. Protein interaction network was constructed to explore hub genes. TargetScan and miRanda databases were used to predicate the interaction. Enrichment analysis in Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were performed to identify the biological functions of ceRNAs. Regression analysis of ceRNAs’ expression level was performed. There were 915 mRNAs and 418 lncRNAs differentially expressed. AURKA, CDC20, IL6, ASPM, CDCA8, BIRC5, UBE2C, H2AFX, RRM2 and CENPE were identified as hub genes. The ceRNAs network, including 28 lncRNAs, 28 miRNAs, and 299 mRNAs, was constructed. Regression analysis showed a good positive correlation between ceRNAs expression levels (r > 0.700, p < 0.001). The enriched functions include ion transmembrane transport, focal adhesion, cAMP signaling pathway and cGMP-PKG signaling pathway. The novel lncRNA-miRNA-mRNA network in IUA was excavated. Crucial lncRNAs such as ADIRF-AS1, LINC00632, DIO3OS, MBNL1-AS1, MIR1-1HG-AS1, AC100803.2 was involved in the development of IUA. cGMP-PKG signaling pathway and ion transport might be new directions for IUA pathogenesis research.
Collapse
Affiliation(s)
- Jingni Zhang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Jiang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Tu
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ning Li
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuzhen Huang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shan Jiang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Kong
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Yuan
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
You L, Wang X, Wu W, Jaćević V, Nepovimova E, Wu Q, Kuca K. Hypothesis: Long non-coding RNA is a potential target of mycotoxins. Food Chem Toxicol 2021; 155:112397. [PMID: 34246706 DOI: 10.1016/j.fct.2021.112397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/12/2021] [Accepted: 07/06/2021] [Indexed: 12/19/2022]
Abstract
The molecular target of mycotoxins is not fully understood. Extensive data derived from cell and animal experimental studies demonstrate that long non-coding RNAs (lncRNAs) play crucial roles in mycotoxin-induced toxicities. Mycotoxins stimulate the upregulation/downregulation of lncRNA expression, which further promote apoptosis, is related to the mTOR/FoxO signaling pathway, and contributes to tumor cell growth, death, and liver and chondrocyte damage. Moreover, lncRNA can establish interactions with NF-κB and cause immune evasion. These preliminary data suggest that lncRNAs are involved in potential upstream regulatory events and further regulate downstream apoptosis, oxidative stress, and anti-apoptotic events that affect cell death and survival. Therefore, we hypothesize that lncRNAs are potential targets of mycotoxins. Investigation of the expression of the potential target lncRNAs by mycotoxin-mediated stimulation, and exploration of the upstream and downstream relationship between lncRNA and the key proteins involved in mycotoxin toxicity, should be performed. This Hypothesis provides clues for further understanding of the molecular mechanisms of mycotoxins.
Collapse
Affiliation(s)
- Li You
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, China
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, 50003, Czech Republic
| | - Vesna Jaćević
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, 50003, Czech Republic; Department for Experimental Toxicology and Pharmacology, National Poison Control Centre, Military Medical Academy, 11000, Belgrade, Serbia; Department of Pharmacological Science, Medical Faculty of the Military Medical Academy, University of Defence, 11000, Belgrade, Serbia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, 50003, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, 50003, Czech Republic.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, 50003, Czech Republic.
| |
Collapse
|
7
|
Zhu L, Yuhan J, Huang K, He X, Liang Z, Xu W. Multidimensional analysis of the epigenetic alterations in toxicities induced by mycotoxins. Food Chem Toxicol 2021; 153:112251. [PMID: 33961929 DOI: 10.1016/j.fct.2021.112251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/30/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023]
Abstract
Mycotoxins contaminate all types of food and feed, threatening human and animal health through food chain accumulation, producing various toxic effects. Increasing attention is being focused on the molecular mechanism of mycotoxin-induced toxicity in all kinds of in vivo and in vitro models. Epigenetic alterations, including DNA methylation, non-coding RNAs (ncRNAs), and protein post-translational modifications (PTMs), were identified as being involved in various types of mycotoxin-induced toxicity. In this review, the emphasis was on summarizing the epigenetic alterations induced by mycotoxin, including aflatoxin B1 (AFB1), ochratoxin A (OTA), zearalenone (ZEA), fumonisin B1 (FB1), and deoxynivalenol (DON). This review summarized and analyzed the roles of DNA methylation, ncRNAs, and protein PTMs after mycotoxin exposure based on recently published papers. Moreover, the main research methods and their deficiencies were determined, while some remedial suggestions are proposed. In summary, this review helps to understand better the epigenetic alterations induced by the non-genotoxic effects of mycotoxin.
Collapse
Affiliation(s)
- Liye Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Jieyu Yuhan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xiaoyun He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhihong Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
8
|
Chen Y, Xu H, Liu C, Gu M, Zhan M, Chen Q, Wang Z. LncRNA DIO3OS regulated by TGF-β1 and resveratrol enhances epithelial mesenchymal transition of benign prostatic hyperplasia epithelial cells and proliferation of prostate stromal cells. Transl Androl Urol 2021; 10:643-653. [PMID: 33718067 PMCID: PMC7947439 DOI: 10.21037/tau-20-1169] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background The etiopathogenesis of benign prostatic hyperplasia (BPH) is extremely complicated which involving epithelial-mesenchymal transition (EMT) of epithelial cells and growth of stromal cells. Long non-coding RNAs (lncRNAs) belong to a group of noncoding RNAs which has been widely studied in other diseases but rarely in BPH. Here, we intend to investigate the roles of a lncRNA DIO3 opposite strand (DIO3OS) in BPH progression. Methods BPH-1 cells were used to study EMT and WPMY-1 cells were applied to study proliferation induced by TGF-β1, resveratrol, DIO3OS and miRNAs. Results DIO3OS was over-expressed in BPH tissues and could be upregulated by Transforming growth factor beta 1 (TGF-β1) and downregulated by resveratrol. Smad2/Smad3/Smad4 complex could bind to the DIO3OS promotor region and thereby enhanced its transcription which was responsible for the regulation of TGF-β1 and resveratrol on DIO3OS expression. TGF-β1 promoted BPH-1 cells EMT and WPMY-1 cells proliferation via DIO3OS and this effect could be blocked by resveratrol. MiR-656-3p and miR-485-5p were targets of DIO3OS and DIO3OS promoted BPH-1 cells EMT and WPMY-1 cells proliferation via miR-656-3p and miR-485-5p. Connective tissue growth factor (CTGF) and zinc finger e-box binding homeobox 1 (ZEB1) were confirmed to be targets of both miR-656-3p and miR-485-5p and could be modulated by TGF-β1, resveratrol, DIO3OS, miR-656-3p and miR-485-5p. Conclusions DIO3OS is highly expressed in BPH tissues and regulated by TGF-β1 as well as resveratrol in a Smads dependent manner. DIO3OS facilitates BPH-1 cells EMT and WPMY-1 cells proliferation by upregulating CTGF and ZEB1 via miR-656-3p and miR-485-5p.
Collapse
Affiliation(s)
- Yanbo Chen
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Xu
- Department of Emergency, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chong Liu
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng Gu
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Zhan
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Chen
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhong Wang
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Li N, Liu XL, Zhang FL, Tian Y, Zhu M, Meng LY, Dyce PW, Shen W, Li L. Whole-transcriptome analysis of the toxic effects of zearalenone exposure on ceRNA networks in porcine granulosa cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114007. [PMID: 32036198 DOI: 10.1016/j.envpol.2020.114007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Zearalenone (ZEA), an estrogen-like mycotoxin, is commonly detected in animal feeds including improperly stored grains. It has been well demonstrated that ovarian granulosa cells (GCs) perform vital roles during follicular development, however, the competing endogenous RNA (ceRNA) network in GCs after ZEA exposure remains to be well described. Here, for the first time, we adopted whole-transcriptome sequence technology to explore the molecular mechanism of ZEA toxicology on porcine GCs. The results provide evidence that the cell cycle of porcine GCs is arrested in the G2/M phase after exposure to ZEA. Furthermore, bioinformation analysis found that cell cycle arrest related genes were perturbed, including CDK1, CCNB1, CDC25A, and CDC25C, which was consistent with the results of RT-qPCR, immunofluorescence, and Western Blotting. Based on the whole-transcriptome sequence data, by constructing ceRNA networks related to cell cycle arrest, we observed that ZEA exposure arrested cell cycle progression at the G2/M phase in porcine GCs, and non-coding RNAs (ncRNAs) played an important role in this process via regulating the expressions of cell cycle arrest related genes. Taken together, our data here provides strong data to support that the toxicological mechanism regarding the widely distributed toxicant ZEA acts through ceRNA networks in porcine granulosa cells.
Collapse
Affiliation(s)
- Na Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xue-Lian Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fa-Li Zhang
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu Tian
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Zhu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ling-Yu Meng
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Paul W Dyce
- Department of Animal Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lan Li
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|