1
|
Singh A, Bakhtyar M, Jun SR, Boerma M, Lan RS, Su LJ, Makhoul S, Hsu PC. A narrative review of metabolomics approaches in identifying biomarkers of doxorubicin-induced cardiotoxicity. Metabolomics 2025; 21:68. [PMID: 40381141 PMCID: PMC12085340 DOI: 10.1007/s11306-025-02258-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/04/2025] [Indexed: 05/19/2025]
Abstract
BACKGROUND While anthracyclines, commonly used in cancer treatment, are well known to cause cardiotoxicity, no validated biomarkers currently exist that can predict the early development of doxorubicin-induced cardiotoxicity (DIC). Therefore, identifying early biomarkers of DIC is urgently needed. Metabolomics approaches have been used to elucidate this relationship and identified related metabolite markers. However, differences in pre-clinical model systems make it challenging to draw definitive conclusions from the discoveries and translate findings into clinical applications. AIM OF REVIEW A systematic literature search on metabolomics studies of DIC was conducted with the goal to identify and compare study results reported using in vitro models, animal models, and studies from clinical patients. Metabolites identified across all studies were pooled to uncover biologically meaningful patterns that are significantly enriched in the data. Finally, pooled metabolites perturbed by DIC were mapped to metabolic pathways to explore potential pathological implications. RESULTS We reviewed 28 studies published between 2000 and 2024 that utilized metabolomics approaches to investigate DIC. The included studies used a variety of analytical techniques, including LC-MS, GC-MS, and NMR. The analysis revealed that metabolites such as inosine, phenylalanine, arginine, and tryptophan were commonly perturbed across all study models, with carnitine metabolism and purine and pyrimidine metabolism being the most affected pathways. Metabolite Set Enrichment Analysis (MSEA) using MetaboAnalyst identified the arginine biosynthesis, citrate cycle, and alanine, aspartate, and glutamate metabolism pathways as significantly enriched. CONCLUSION These findings underscore the potential of metabolomics in identifying early biomarkers for DIC, providing a foundation for future studies aimed at preventing cardiotoxicity and improving treatment strategies for cancer patients receiving DOX-containing therapies. KEY SCIENTIFIC CONCEPTS OF REVIEW Altogether, metabolomics studies suggest metabolic alterations in DIC, albeit little overlap between studies especially with animal and human studies. Attempts at intercepting these pathways have shown that intervention in DIC may be possible. Future research should focus on developing precise cardiotoxicity models that incorporate cancer metabolism, as these will be crucial in bridging the gap between laboratories (in vitro and animal models) and clinical studies to identify subclinical biomarkers in the early stage of DIC that can effectively identify new targets for interventions to reduce lethal cardiovascular disease risk.
Collapse
Affiliation(s)
- Amarnath Singh
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Maham Bakhtyar
- Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Se-Ran Jun
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Marjan Boerma
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Renny S Lan
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - L Joseph Su
- Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sam Makhoul
- CARTI Research Department, Little Rock, AR, USA
| | - Ping-Ching Hsu
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
2
|
Alhazzani K, Mohammed H, Algahtani MM, Aljerian K, Alhoshani A, As Sobeai HM, Ahamad SR, Alotaibi MR, Alhamed AS, Alasmari F, Alqinyah M, Alhamami HN, Alanazi AZ. Integrating Metabolomics, Histopathology, and Cardiac Marker Analysis to Assess Valsartan's Efficacy in Mitigating Dasatinib-Induced Cardiac Toxicity in Sprague-Dawley Rats. Drug Des Devel Ther 2024; 18:5641-5654. [PMID: 39654603 PMCID: PMC11626959 DOI: 10.2147/dddt.s497212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024] Open
Abstract
Background Dasatinib (DASA) is associated with cardiotoxic effects, posing risks to patients. Valsartan (VAL) may offer protective benefits against these effects. This study evaluates the impact of DASA, VAL, and their combination on cardiac health. Methods Wistar rats were treated with DASA, VAL, and a combination of VAL and DASA intraperitoneally every other day for 14 days. Body weight and survival rates were monitored. Serum levels of cardiac biomarkers (CPK, LDH, AST) were analyzed. Histopathological and immunohistochemical analyses assessed myocardial architecture and apoptosis-related protein expression. Metabolomic profiling was conducted using GC-MS to identify metabolic changes across treatment groups. Results The DASA group experienced significant weight loss and a 50% mortality rate, while the combination group had no mortality. Cardiac biomarkers like CPK, LDH, and AST were elevated in the DASA group but significantly reduced in the VAL + DASA group. Histopathological examination showed significant myocardial injury in the DASA group, with improved cardiac tissue morphology in the combination group. Immunohistochemical analysis revealed altered expression of apoptosis-related proteins, including caspase-3 and BCL-2, with improved levels in the combination group compared to DASA alone. Metabolomic profiling identified significant metabolic shifts, with 15 metabolites differentiating the treatment groups, and the VAL + DASA group mitigated the metabolic disturbances caused by DASA. Conclusion The study suggesting VAL's potential therapeutic role in managing DASA-induced cardiac toxicity. The combination of VAL with DASA not only improved survival rates and reduced cardiac biomarker levels but also preserved myocardial architecture and normalized metabolic profiles. These findings highlight the importance of integrated approaches in evaluating drug efficacy and suggest VAL as a promising candidate for protecting cardiac function in preclinical models of DASA therapy.
Collapse
Affiliation(s)
- Khalid Alhazzani
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hanan Mohammed
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad M Algahtani
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khaldoon Aljerian
- Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ali Alhoshani
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Homood M As Sobeai
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Syed Rizwan Ahamad
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Moureq R Alotaibi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah S Alhamed
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Alqinyah
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hussain N Alhamami
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Z Alanazi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Zhou M, Meng L, He Q, Ren C, Li C. Valsartan attenuates LPS-induced ALI by modulating NF-κB and MAPK pathways. Front Pharmacol 2024; 15:1321095. [PMID: 38288441 PMCID: PMC10822936 DOI: 10.3389/fphar.2024.1321095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/04/2024] [Indexed: 01/31/2024] Open
Abstract
Background: Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a common respiratory disease characterized by persistent hypoxemia and an uncontrolled inflammatory response. Valsartan, an angiotensin II type 1 receptor antagonist, is clinically used to treat hypertension and has anti-inflammatory and antioxidant effects on gefitinib-induced pneumonia in rats. However, the potential therapeutic effects of valsartan on lipopolysaccharide (LPS)-induced ALI remain unclear. This study investigated the protective role of valsartan in LPS-induced ALI and its underlying mechanisms. Methods: LPS-treated BEAS-2B cells and ALI mouse model were established. BEAS-2B cells were treated with LPS (10 μg/mL) for 24h, with or without valsartan (20, 40, and 80 µM). For ALI mouse models, LPS (5 mg/kg) was administered through intratracheal injection to treat the mice for 24h, and valsartan (10 or 30 mg/kg) was injected intraperitoneally twice 2 h before and 12 h after the LPS injection. Pulmonary functional parameters were examined by an EMKA pulmonary system. Hematoxylin and eosin staining, flow cytometry, CCK-8 assay, qRT-PCR, ELISA, immunofluorescence, Western blotting, and related commercial kits were used to assess the pathological damage to the lungs, neutrophil recruitment in the lung tissue and bronchoalveolar lavage fluid (BALF), cell viability, inflammation, oxidative activity, and mucus production, respectively. Potential mechanisms were further explored using network pharmacology and Western blotting. Results: Valsartan rescued LPS-reduced cell viability of BEAS-2B cells, improved the pulmonary function, ameliorated pathological lung injury in mice with ALI, ameliorated LPS-induced neutrophil recruitment in BALF and lung tissue of mice, attenuated oxidative stress by increasing the level of SOD and decreasing that of MDA and GSSG, inhibited LPS-induced MUC5AC overproduction, decreased the LPS-induced increase in expression of pro-inflammatory cytokines/chemokines including TNF-α, IL-6, IL-1β, CXCL-1 and CXCL-2, and restored the expression of anti-inflammatory IL-10. Mechanistic studies showed that valsartan inhibits LPS-induced phosphorylation of nuclear factor-kappa B (NF-κΒ) and mitogen-activated protein kinases (MAPKs) including P38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) in both LPS-treated cells and the mouse model of ALI. Conclusion: Valsartan protects against LPS-induced ALI by attenuating oxidative stress, reducing MUC5AC production, and attenuating the inflammatory response that may involve MAPK and NF-κΒ pathways.
Collapse
Affiliation(s)
- Mi Zhou
- Department of Respiratory and Critical Care, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Ling Meng
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Qinke He
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Chunguang Ren
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Changyi Li
- Department of Respiratory and Critical Care, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Suleimani YA, Maskari RA, Ali BH, Ali H, Manoj P, Al-Khamiyasi A, Abdelrahman AM. Nephroprotective effects of diminazene on doxorubicin-induced acute kidney injury in rats. Toxicol Rep 2023; 11:460-468. [PMID: 38053572 PMCID: PMC10693989 DOI: 10.1016/j.toxrep.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/29/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
This study aimed to investigate the potential protective effects of diminazene, an activator of angiotensin II converting enzyme (ACE2), on kidney function and structure in rats with acute kidney injury (AKI) induced by the anticancer drug doxorubicin (DOX). The impact of diminazene was compared to that of two other drugs: the ACE inhibitor lisinopril and the angiotensin II type 1 (AT1) receptor blocker valsartan. Rats were subjected to a single intraperitoneal injection of DOX (13.5 mg/kg) on the 5th day, either alone or in combination with diminazene (15 mg/kg/day), lisinopril (10 mg/kg/day), or valsartan (30 mg/kg/day) for 8 consecutive days. Various markers related to kidney function, oxidative stress, and inflammation were measured in plasma and urine. Additionally, kidney tissues were assessed histopathologically. DOX-induced nephrotoxicity was confirmed by elevated levels of plasma urea, creatinine, and neutrophil gelatinase-associated lipocalin (NGAL). DOX also led to increased urinary N-acetyl-β-D-glucosaminidase (NAG) activity and decreased creatinine clearance, albumin levels, and osmolality. Moreover, DOX caused a reduction in renal oxidative stress markers, including superoxide dismutase (SOD), glutathione reductase (GR), and catalase activities, while increasing malondialdehyde (MDA) levels. It also raised plasma inflammatory markers, tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β). Concurrently administering diminazene significantly mitigated these DOX-induced changes, including histopathological alterations like renal tubule necrosis, tubular casts, shrunken glomeruli, and increased renal fibrosis. Similar protective effects were observed with lisinopril and valsartan. These protective effects, at least in part, appear to result from the anti-inflammatory and antioxidant properties of these drugs. In summary, this study suggests that the administration of diminazene, lisinopril, or valsartan had comparable effects in ameliorating the biochemical and histopathological aspects of DOX-induced acute kidney injury in rats.
Collapse
Affiliation(s)
- Yousuf Al Suleimani
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Al Khod 123, Oman
| | - Raya Al Maskari
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Al Khod 123, Oman
| | - Badreldin H. Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Al Khod 123, Oman
| | - Haytham Ali
- Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Priyadarsini Manoj
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Al Khod 123, Oman
| | - Ali Al-Khamiyasi
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Al Khod 123, Oman
| | - Aly M. Abdelrahman
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Al Khod 123, Oman
| |
Collapse
|
5
|
Alanazi WA, Alhamami HN, Alshamrani AA, Alqahtani F, Alshammari A, Alhazzani K, Alswayyed M. Valsartan prevents gefitinib-induced lung inflammation, oxidative stress, and alteration of plasma metabolites in rats. Saudi J Biol Sci 2023; 30:103522. [PMID: 36561332 PMCID: PMC9763942 DOI: 10.1016/j.sjbs.2022.103522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/01/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Gefitinib (GEF) is an inhibitor of the epidermal growth factor receptor, linked to higher risk of severe/fatal interstitial lung disease (ILD). This study was performed to determine the protective roles of an angiotensin-II type-1 receptor (AT1R) "valsartan (VAL)" in prevention of lung inflammation, oxidative stress and metabolites alteration induced by GEF. Four groups of male Wistar albino rats were received vehicle, VAL (30 mg/kg), GEF (30 mg/kg), or both for four weeks. Blood samples and lungs were harvested for plasma metabolites and histological analysis, respectively, and evaluation of inflammation and oxidative stress. GEF monotherapy showed a dense inflammation in lungs, and significantly increased tumor necrosis factor-α (P = 0.0349), interleukin-6 (P < 0.0001), chemokine ligand-3 (P = 0.0420), and interleukin-1β (P = 0.0377). GEF increased oxidative stress markers including glutathione, malondialdehyde, and catalase levels. Also, several plasma metabolites including butanoic acid, N-methylphenylethanolamine, oxalic acid, l-alanine, phosphoric acid, l-theorinine, pyroglutamic acid, and 2-bromosebacic acid were changed by GEF. The combination of VAL plus GEF reduced the inflammation and oxidative stress mediated by GEF monotherapy. In addition, the combination treatment returned plasma metabolites to the normal levels compared to GEF monotherapy. These findings revealed that VAL has a possible pulmonary protective role against pulmonary toxicity of GEF, which may lead to novel approaches for management of GEF-induced ILD.
Collapse
Affiliation(s)
- Wael A. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia,Corresponding author at: Department of Pharmacology and Toxicology College of Pharmacy King Saud University, P.O. Box: 2457, Riyadh 11451, Saudi Arabia.
| | - Hussain N. Alhamami
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali A. Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Alswayyed
- Department of Pathology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Zhang MW, Li XT, Zhang ZZ, Liu Y, Song JW, Liu XM, Chen YH, Wang N, Guo Y, Liang LR, Zhong JC. Elabela blunts doxorubicin-induced oxidative stress and ferroptosis in rat aortic adventitial fibroblasts by activating the KLF15/GPX4 signaling. Cell Stress Chaperones 2023; 28:91-103. [PMID: 36510036 PMCID: PMC9877260 DOI: 10.1007/s12192-022-01317-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Doxorubicin (DOX) is a chemotherapeutic drug for a variety of malignancies, while its application is restricted by the cardiovascular toxic effects characterized by oxidative stress. Ferroptosis is a novel iron-dependent regulated cell death driven by lipid peroxidation. Our study aimed to investigate the role of Elabela (ELA) in DOX-induced oxidative stress and ferroptosis. In cultured rat aortic adventitial fibroblasts (AFs), stimulation with DOX dramatically induced cytotoxicity with reduced cell viability and migration ability, and enhanced lactate dehydrogenase (LDH) activity. Importantly, ELA and ferrostatin-1 (Fer-1) mitigated DOX-mediated augmentation of reactive oxygen species (ROS) in rat aortic AFs, accompanied by upregulated levels of Nrf2, SLC7A11, GPX4, and GSH. In addition, ELA reversed DOX-induced dysregulation of apoptosis- and inflammation-related factors including Bax, Bcl2, interleukin (IL)-1β, IL6, IL-10, and CXCL1. Intriguingly, knockdown of Krüppel-like factor 15 (KLF15) by siRNA abolished ELA-mediated alleviation of ROS production and inflammatory responses. More importanly, KLF15 siRNA impeded the beneficial roles of ELA in DOX-pretreated rat aortic AFs by suppressing the Nrf2/SLC7A11/GPX4 signaling. In conclusion, ELA prevents DOX-triggered promotion of cytotoxicity, and exerts anti-oxidative and anti-ferroptotic effects in rat aortic AFs via activation of the KLF15/GPX4 signaling, indicating a promising therapeutic value of ELA in antagonizing DOX-mediated cardiovascular abnormality and disorders.
Collapse
Affiliation(s)
- Mi-Wen Zhang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xue-Ting Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Zhen-Zhou Zhang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Ying Liu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jia-Wei Song
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xin-Ming Liu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yi-Hang Chen
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Ning Wang
- Department of Geratology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ying Guo
- Department of Geratology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Li-Rong Liang
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - Jiu-Chang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
7
|
Nemoto H, Umemura M, Suzuki F, Nagasako A, Nagao K, Hidaka Y, Nakakaji R, Uchida K, Suzuki S, Masuda M, Ishikawa Y. Store-operated calcium entry via ORAI1 regulates doxorubicin-induced apoptosis and prevents cardiotoxicity in cardiac fibroblasts. PLoS One 2022; 17:e0278613. [PMID: 36472998 PMCID: PMC9725120 DOI: 10.1371/journal.pone.0278613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Despite exhibiting cardiotoxicity, doxorubicin (DOX) is widely used for cancer treatments. Cardiac fibroblasts (CFs) are important in the pathogenesis of heart failure. This necessitates the study of the effect of DOX on CFs. The impairment of calcium (Ca2+) homeostasis is a common mechanism of heart failure. Store-operated Ca2+ entry (SOCE) is a receptor-regulated Ca2⁺ entry pathway that maintains calcium balance by sensing reduced calcium stores in the endoplasmic reticulum. ORAI1, a calcium channel protein and the most important component of SOCE, is highly expressed in human cardiac fibroblasts (HCFs). It is upregulated in CFs from failing ventricles. However, whether ORAI1 in HCFs is increased and/or plays a role in DOX-induced cardiotoxicity remains unknown. In this study, we aimed to elucidate the relationship between ORAI1/SOCE and DOX-induced heart failure. Induction of apoptosis by DOX was characterized in HCFs. Apoptosis and cell cycle analyses were performed by fluorescence-activated cell sorting (FACS). Reactive oxygen species (ROS) production was measured using fluorescence. YM-58483 was used as an ORAI1/SOCE inhibitor. ORAI1-knockdown cells were established by RNA interference. In vivo experiments were performed by intraperitoneally injecting YM-58483 and DOX into mice. We first demonstrated that DOX significantly increased the protein expression level of p53 in HCFs by western blotting. FACS analysis revealed that DOX increased early apoptosis and induced cell cycle arrest in the G2 phase in fibroblasts. DOX also increased ROS production. DOX significantly increased the expression level of ORAI1 in CFs. Both YM-58483 and ORAI1 gene knockdown attenuated DOX-induced apoptosis. Similarly, YM-58483 attenuated cell cycle arrest in the G2 phase, and ORAI1 knockdown attenuated DOX-induced ROS production in HCFs. In the animal experiment, YM-58483 attenuated DOX-induced apoptosis. In HCFs, ORAI1/SOCE regulates p53 expression and plays an important role in DOX-induced cardiotoxicity. ORAI1 may serve as a new target for preventing DOX-induced heart failure.
Collapse
Affiliation(s)
- Hiroko Nemoto
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
- Department of Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Masanari Umemura
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
- * E-mail: (MU); (YI)
| | - Fumina Suzuki
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Akane Nagasako
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Kagemichi Nagao
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Yuko Hidaka
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Rina Nakakaji
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Keiji Uchida
- Department of Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Shinichi Suzuki
- Department of Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Munetaka Masuda
- Department of Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
- * E-mail: (MU); (YI)
| |
Collapse
|
8
|
Metabolomic Profiles on Antiblastic Cardiotoxicity: New Perspectives for Early Diagnosis and Cardioprotection. J Clin Med 2022; 11:jcm11226745. [PMID: 36431222 PMCID: PMC9693331 DOI: 10.3390/jcm11226745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Antiblastic drugs-induced cardiomyopathy remains a relevant cause of morbidity and mortality, during and after chemotherapy, despite the progression in protective therapy against cardiovascular diseases and myocardial function. In the last few decades, many groups of researchers have focused their attention on studying the metabolic profile, first in animals, and, subsequently, in humans, looking for profiles which could be able to predict drug-induced cardiotoxicity and cardiovascular damage. In clinical practice, patients identified as being at risk of developing cardiotoxicity undergo a close follow-up and more tailored therapies. Injury to the heart can be a consequence of both new targeted therapies, such as tyrosine kinase inhibitors, and conventional chemotherapeutic agents, such as anthracyclines. This review aims to describe all of the studies carried on this topic of growing interest.
Collapse
|
9
|
Angiotensin II type 1 receptor blockade attenuates gefitinib-induced cardiac hypertrophy via adjusting angiotensin II-mediated oxidative stress and JNK/P38 MAPK pathway in a rat model. Saudi Pharm J 2022; 30:1159-1169. [PMID: 36164571 PMCID: PMC9508643 DOI: 10.1016/j.jsps.2022.06.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/17/2022] [Indexed: 11/10/2022] Open
Abstract
Gefitinib is a tyrosine kinase inhibitor (TKI) of the epidermal growth factor receptor (EGFR), used for the treatment of advanced or metastatic non-small cell lung cancer. Recently, studies proved that Gefitinib-induced cardiotoxicity through induction of oxidative stress leads to cardiac hypertrophy. The current study was conducted to understand the mechanisms underlying gefitinib-induced cardiac hypertrophy through studying the roles of angiotensin II (AngII), oxidative stress, and mitogen-activated protein kinase (MAPK) pathway. Male Wistar albino rats were treated with valsartan, gefitinib, or both for four weeks. Blood samples were collected for AngII and cardiac markers measurement, and hearts were harvested for histological study and biochemical analysis. Gefitinib caused histological changes in the cardiac tissues and increased levels of cardiac hypertrophy markers, AngII and its receptors. Blocking of AngII type 1 receptor (AT1R) via valsartan protected hearts and normalized cardiac markers, AngII levels, and the expression of its receptors during gefitinib treatment. valsartan attenuated gefitinib-induced NADPH oxidase and oxidative stress leading to down-regulation of JNK/p38-MAPK pathway. Collectively, AT1R blockade adjusted AngII-induced NADPH oxidase and JNK/p38-MAPK leading to attenuation of gefitinib-induced cardiac hypertrophy. This study found a pivotal role of AngII/AT1R signaling in gefitinib-induced cardiac hypertrophy, which may provide novel approaches in the management of EGFRIs-induced cardiotoxicity.
Collapse
|
10
|
Yang R, Tan C, Najafi M. Cardiac inflammation and fibrosis following chemo/radiation therapy: mechanisms and therapeutic agents. Inflammopharmacology 2021; 30:73-89. [PMID: 34813027 DOI: 10.1007/s10787-021-00894-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Abstract
The incidence of cardiovascular disorders is one of the most concerns among people who underwent cancer therapy. The heart side effects of cancer therapy may occur during treatment to some years after the end of treatment. Some epidemiological studies confirm that heart diseases are one of the most common reasons for mortality among patients that were received treatment for cancer. Experimental studies and also clinical investigations indicate that inflammatory changes such as pericarditis, myocarditis, and also fibrosis are key mechanisms of cardiac diseases following chemotherapy/radiotherapy. It seems that chronic oxidative stress, massive cell death, and chronic overproduction of pro-inflammatory and pro-fibrosis cytokines are the key mechanisms of cardiovascular diseases following cancer therapy. Furthermore, infiltration of inflammatory cells and upregulation of some enzymes such as NADPH Oxidases are a hallmark of heart diseases after cancer therapy. In the current review, we aim to explain how radiation or chemotherapy can induce inflammatory and fibrosis-related diseases in the heart. We will explain the cellular and molecular mechanisms of cardiac inflammation and fibrosis following chemo/radiation therapy, and then review some adjuvants to reduce the risk of inflammation and fibrosis in the heart.
Collapse
Affiliation(s)
- Run Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, No. 139 Renmin Road, Changsha, Hunan, People's Republic of China
| | - Changming Tan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, No. 139 Renmin Road, Changsha, Hunan, People's Republic of China.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|